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A	few	historical	landmarks	

1814 	Joseph	von	Fraunhofer	
	
	
	
	
	
	
1888	 	“Rydberg	formula” 		

Idea	of	an	infinite	series	
⇒	highly	excited	states	

observa4on	of	dark	lines	in	spectrum	of	the	sun	
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“Rydberg	atom”	=	a	highly	excited	atom	(e.g.	Rb)	
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⇒ Exaggerated	proper6es:		
•  	 strong	interac4on	
•  	 strong	coupling	to	fields	(DC,	MW)	



Back	to	history…	

1975 	Spectroscopy	using	lasers	(Gallagher,	Kleppner,	Haroche…)	
	
1980	–	2000 	Cavity	Quantum	Electrodynamics	using	Rydbergs	
	
	
	
	
	
1998 	Rydbergs	meet	cold	atoms	P.	Pillet	and	T.	Gallagher	

kBT	<<	Interac6on	energy		
⇒	T	<	1	mK	

	Anderson,	PRL	80,	249	(1998)	
Mourachko,	PRL	80,	253	(1998)	

p	+	p	↔	s	+	s’	
p	+	s	↔	s	+	p	

Diffusion	of	excita4on	faster		
than	mo4on	⇒	correla4ons	

	between	all	atoms	

“Frozen”	gas	
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1	Rydberg	interacts	with	1	photon!	
Haroche,	Walther…	



Interac6ons	between	Rydberg	atoms	

and have been used to demonstrate high fidelity gates
and small algorithms !Blatt and Wineland, 2008". Neu-
tral atom qubits represent another promising approach
!Bloch, 2008". They share many features in common
with trapped ion systems including long-lived encoding
of quantum information in atomic hyperfine states and
the possibility of manipulating and measuring the qubit
state using resonant laser pulses.

Neutral atoms distinguish themselves from ions when
we consider their state dependent interaction properties,
which are essential for implementing two-qubit quantum
gates. Figure 1 shows the dependence of the two-particle
interaction strength on separation R for singly charged
ions, ground-state neutral atoms, and Rydberg atoms.
The interaction of ground-state atoms is dominated by
1/R6 van der Waals forces at short range and 1/R3 mag-
netic dipole-dipole forces beyond about 30 nm. At spac-
ings greater than 1 !m the interaction is weak, less than
1 Hz in frequency units, which implies that an array of
neutral atom qubits can be structurally stable. On the
other hand, excitation of Rb atoms to the 100s Rydberg
level results in a very strong interaction that has reso-
nant dipole-dipole character, scaling as 1/R3, at short
distances and van der Waals character, scaling as 1/R6,
at long distances. As will be discussed in Sec. II the char-
acteristic length scale Rc where the Rydberg interaction
changes character depends on the principal quantum
number n. For the 100s state the crossover length is
close to Rc=9.5 !m, and at this length scale the ratio of
the Rydberg interaction to the ground-state interaction
is approximately 1012.

The applicability of Rydberg atoms for quantum infor-
mation processing, which is the central topic of this re-
view, can be traced to the fact that the two-atom inter-
action can be turned on and off with a contrast of 12
orders of magnitude. The ability to control the interac-
tion strength over such a wide range appears unique to
the Rydberg system. We may compare this with trapped
ions whose Coulomb interaction is much stronger but is
always present. The strong Coulomb interaction is ben-
eficial for implementing high fidelity gates !Benhelm et
al., 2008b" but the always on character of the interaction
makes the task of establishing a many-qubit register ap-

pear more difficult than it may be for an array of weakly
interacting neutral atoms. Several approaches to scal-
ability in trapped ion systems are being explored includ-
ing the development of complex multizone trap tech-
nologies !Seidelin et al., 2006" and anharmonic traps !Lin
et al., 2009". We note that some of the attractive features
of Rydberg-mediated interactions may also be appli-
cable to trapped ion systems !Müller et al., 2008".

A. Rydberg-mediated quantum gates

The idea of using dipolar Rydberg interactions for
neutral atom quantum gates was introduced in 2000
!Jaksch et al., 2000" and quickly extended to a meso-
scopic regime of many-atom ensemble qubits !Lukin et
al., 2001". The basic idea of the Rydberg blockade two-
qubit gate is shown in Fig. 2. When the initial two-atom
state is |01# $Fig. 2!a"% the control atom is not coupled to
the Rydberg level and the target atom picks up a "
phase shift. When the initial state is |11# both atoms are
coupled to the Rydberg level. In the ideal case when the
two-atom “blockade” shift B due to the Rydberg inter-
action is large compared to the excitation Rabi fre-
quency #, excitation of the target atom is blocked and it
picks up no phase shift. The evolution matrix expressed
in the computational basis &|00#,|01#,|10#,|11#' is

U =(
1 0 0 0
0 − 1 0 0
0 0 − 1 0
0 0 0 − 1

) , !1"

which is a controlled-Z !CZ" gate. As is well known
!Nielsen and Chuang, 2000" the CZ gate can be readily
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FIG. 1. !Color online" Two-body interaction strength for
ground-state Rb atoms, Rb atoms excited to the 100s level,
and ions.
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FIG. 2. !Color online" Rydberg blockade controlled phase gate
operating on input states !a" |01# and !b" |11#. Quantum infor-
mation is stored in the basis states |0#, |1# and state |1# is
coupled to a Rydberg level *r# with excitation Rabi frequency
#. The controlled phase gate is implemented with a three
pulse sequence: !1" " pulse on control atom *1#→ *r#, !2" 2"
pulse on target atom *1#→ *r#→ *1#, and !3" " pulse on control
atom *r#→ *1#. !a" The case where the control atom starts in |0#
and is not Rydberg excited so there is no blockade. !b" The
case where the control atom is in |1# which is Rydberg excited
leading to blockade of the target atom excitation.
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I. INTRODUCTION

The field of quantum information processing is cur-
rently attracting intense interest. This is fueled by the
promise of applications and by rapid experimental
progress. The most advanced experimental demonstra-
tions at this time include trapped ions !Blatt and Wine-
land, 2008", linear optics !Kok et al., 2007", supercon-
ductors !Clarke and Wilhelm, 2008; DiCarlo et al., 2009",
and quantum dots in semiconductors !Li et al., 2003;
Petta et al., 2005; Barthel et al., 2009". Trapped ion qubits
have reached the most advanced state of sophistication
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A	new	era:	the	Rydberg	Blockade	idea	
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We propose several schemes for implementing a fast two-qubit quantum gate for neutral atoms with
the gate operation time much faster than the time scales associated with the external motion of the atoms
in the trapping potential. In our example, the large interaction energy required to perform fast gate
operations is provided by the dipole-dipole interaction of atoms excited to low-lying Rydberg states in
constant electric fields. A detailed analysis of imperfections of the gate operation is given.

PACS numbers: 03.67.Lx, 32.80.Pj, 32.80.Rm

In recent years, numerous proposals to build quantum
information processors have been made [1]. Because
of their exceptional ability of quantum control and long
coherence times, quantum optical systems such as trapped
ions [2] and atoms [3], and cavity QED [4], have taken a
leading role in implementing quantum logic in the labora-
tory. Quantum computing with neutral atoms [5] seems
particularly attractive in view of very long coherence times
of the internal atomic states and well-developed techniques
for cooling and trapping atoms in optical lattices, far
off-resonance light traps, and magnetic microtraps [3].
Preparation and rotations of single qubits associated with
long-lived internal states can be performed by addressing
individual atoms with laser pulses. A central issue is to
design fast two-qubit gates.

First of all, it is difficult to identify a strong and con-
trollable two-body interaction for neutral atoms, which is
required to design a gate. Furthermore, the strength of
two-body interactions does not necessarily translate into
a useful fast quantum gate: large interactions are usually
associated with strong mechanical forces on the trapped
atoms. Thus, internal states of the trapped atoms (the
qubits) may become entangled with the motional degrees
of freedom during the gate, resulting effectively in an ad-
ditional source of decoherence. This leads to the typical
requirement that the process is adiabatic on the time scale
of the oscillation period of the trapped atoms in order to
avoid entanglement with motional states. As a result, ex-
tremely tight traps and low temperatures are required.

In the present Letter, we propose a fast phase gate
for neutral trapped atoms, corresponding to a truth table
je1! ≠ je2! ! eie1e2wje1! ≠ je2! for the logical states
jei! with ei ! 0, 1, which (i) exploits the very large
interactions of permanent dipole moments of laser excited
Rydberg states in a constant electric field to entangle
atoms, while (ii) allowing gate operation times set by

the time scale of the laser excitation or the two particle
interaction energy, which can be significantly shorter than
the trap period. Among the attractive features of the gate
are the insensitivity to the temperature of the atoms and to
the variations in atom-atom separation.

Rydberg states [6] of a hydrogen atom within a given
manifold of a fixed principal quantum number n are de-
generate. This degeneracy is removed by applying a con-
stant electric field E along the z axis (linear Stark effect).
For electric fields below the Ingris-Teller limit the mix-
ing of adjacent n manifolds can be neglected, and the en-
ergy levels are split according to DEnqm ! 3nqea0E"2
with parabolic and magnetic quantum numbers q ! n 2
1 2 jmj, n 2 3 2 jmj, . . . , 2#n 2 1 2 jmj$ and m, re-
spectively, e the electron charge, and a0 the Bohr ra-
dius. These Stark states have permanent dipole moments
m % mzez ! 3nqea0ez"2. In alkali atoms the s and p
states are shifted relative to the higher angular momentum
states due to their quantum defects, and the Stark maps
of the m ! 0 and m ! 1 manifolds are correspondingly
modified [6].

Consider two atoms 1 and 2 at fixed positions (see
Fig. 1a), and initially prepared in Stark eigenstates, with
a dipole moment along z and a given m, as selected by the
polarization of the laser exciting the Rydberg states from
the ground state. They interact and evolve according to the
dipole-dipole potential

Vdip#r$ !
1

4pe0

"
m1 ? m2

jrj3 2 3
#m1 ? r$ #m2 ? r$

jrj5

#
,

(1)

with r the distance between the atoms. We are interested
in the limit where the electric field is sufficiently large
so that the energy splitting between two adjacent Stark
states is much larger than the dipole-dipole interaction.

2208 0031-9007"00"85(10)"2208(4)$15.00 © 2000 The American Physical Society
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We describe a technique for manipulating quantum information stored in collective states of meso-
scopic ensembles. Quantum processing is accomplished by optical excitation into states with strong
dipole-dipole interactions. The resulting “dipole blockade” can be used to inhibit transitions into all but
singly excited collective states. This can be employed for a controlled generation of collective atomic
spin states as well as nonclassical photonic states and for scalable quantum logic gates. An example
involving a cold Rydberg gas is analyzed.
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Recent advances in quantum information science have
opened a door for a number of fascinating potential appli-
cations ranging from the factorization of large numbers and
secure communication to spectroscopic techniques with
enhanced sensitivity. But the practical implementation of
quantum processing protocols such as quantum computa-
tion requires coherent manipulation of a large number of
coupled quantum systems which is an extremely difficult
task [1]. Challenges ranging from a long-time storage of
quantum information to scalable quantum logic gates are
by now well known. It is generally believed that precise
manipulation of microscopic quantum objects is essential
to implement quantum protocols. For example, in most
of the potentially viable candidates for quantum comput-
ers an exceptional degree of control over submicron sys-
tems is essential for performing single-bit operations and
the two-bit coupling is accomplished by interactions be-
tween nearest neighbors [2]. Related techniques are also
being explored that involve photons to connect qubits [3],
and to construct potentially scalable quantum networks [4].
However, since the single-atom absorption cross section is
very small, reliable coupling to light requires high-finesse
microcavities [5].

In the present Letter we describe a technique for the
coherent manipulation of quantum information stored
in collective excitations of mesoscopic many-atom en-
sembles. This is accomplished by optically exciting the
ensemble into states with a strong atom-atom interaction.
Specifically, we consider the case involving dipole-dipole
interactions in an ensemble of cold atoms excited into
Rydberg states. Under certain conditions the level shifts
associated with these interactions can be used to block
the transitions into states with more than a single ex-
citation. The resulting “dipole blockade” phenomenon
closely resembles similar mesoscopic effects in nanoscale
solid-state devices [6]. In the present context it can take
place in an ensemble with a size that can exceed many

optical wavelengths. Combined with the exceptional
degree of control that is typical for quantum optical
systems and long coherence times, this allows one to
considerably alleviate many stringent requirements for
the experimental implementation of various quantum
processing protocols. In particular, we show that this
technique can be used to (i) generate superpositions
of collective spin states (or Dicke states [7]) in an
ensemble; (ii) coherently convert these states into corre-
sponding states of photon wave packets of prescribed di-
rection, duration, and pulse shapes and vice versa using the
collectively enhanced coupling to light [8]; and (iii) per-
form quantum gate operations between distant qubits.
Corresponding applications including (i) subshot noise
spectroscopy and atom interferometry [9], (ii) secure
cryptography protocols [10], and (iii) scalable quantum
logic devices can be foreseen. In general, no strongly
coupling microcavities and no single particle control are
required to implement computation and communication
protocols. We further anticipate that the approach can
be applied to a variety of interacting many-body systems
ranging from trapped ions to specifically designed semi-
conductor structures.

The basic element of the present scheme is an ensemble
of N identical multistate atoms (Fig. 1) contained in a
volume V . Using well-developed techniques all atoms
can be trapped and prepared in a specific sublevel (gi ,
i ! 1, . . . , N) of the ground state manifold. Relevant states
of each atom include a pair of metastable sublevels of
the ground state manifold qi that are used for long-time
storage of qubits (storage states) and long-lived Rydberg
states ri , p

0
i , p

00
i . Additional Rydberg sublevels as well as

lower electronic excited states can be used for specific
applications. We assume modest atomic densities, such
that interactions between atoms can safely be neglected
whenever they are in the sublevels of the ground state.
This also implies long coherence lifetimes — up to a few

037901-1 0031-9007!01!87(3)!037901(4)$15.00 © 2001 The American Physical Society 037901-1
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by a narrowband 297 nm laser pulse of 8.6 ns duration
(FWHM), generated by frequency doubling of a pulse-
amplified cw laser as in our earlier work [11]. The band-
width of about 100 MHz, measured by scanning over the
30p resonance, is about twice the Fourier transform limit
due to frequency chirping in the pulsed amplifier [12].
This high spectral resolution is necessary to observe the
effects of the small vdW shifts. In order to excite the
highest density region, the UV light is focused into the
MOT cloud, yielding a cylindrical excitation volume
!500 !m long and !220 !m in diameter (FWHM).
Within 60 ns after the laser pulse, a !1500 V=cm electric
field is applied, ionizing the Rydberg atoms and acceler-
ating the ions towards a microchannel plate (MCP) de-
tector. The trapping light is turned off when the UV pulse
arrives in order to prevent direct photoionization from
the 5p level.

The MCP is calibrated using two methods. The first is
based on the signal from near-threshold photoionization
of the 5s ground state. The measured density distribution
in the MOT, obtained from the trapped-atom fluorescence
profile, is combined with the measured UV beam pa-
rameters and the known photoionization cross section
[13,14] to calculate the number of photoions per laser
pulse. The second method is based on the n " 30
Rydberg signal, which behaves as isolated-atom excita-
tion at all intensities used, because for n " 30 the vdW
interaction is relatively weak. A linear fit is combined
with calculations utilizing the 5s ! 30p oscillator
strength of Ref. [15], including the effects of a linear
laser frequency chirp corresponding to the observed
bandwidth. The chirp reduces the isolated-atom excita-
tion efficiency by a factor of ’ 2, the ratio of the band-
width to the Fourier transform limit. The two calibrations
agree within 2%, fortuitously even better than the domi-
nant uncertainties in this comparison, 15–20% in the
photoionization cross sections [13,14] and 10–20% in
the laser linewidth. This confirms that we can make
accurate quantitative predictions of excitation probabil-
ities in the absence of a blockade.

The dependence of the Rydberg signal on the peak UV
irradiance is shown in Fig. 1 for n " 30, 70, and 80. The
signal plotted is the fraction of the entire MOT sample
that is excited. For each n, the irradiance values are scaled
to n " 30 by the factor #30$=n$%3 in order to account for
the decrease in transition strength with increasing n. Here
n$ " n& ", and " " 2:6415 is the quantum defect
for p3=2 states [16]. Note that the n " 30 saturation in-
tensity for isolated atoms, defined as that required for an
unchirped #-pulse in the center of the beam, is
0:36 MW=cm2. With this irradiance scaling, the various
n’s would fall on a universal isolated-atom excitation
curve if the Rydberg levels were unshifted by atomic
interactions. This is seen to be the case for the very lowest
intensities, at which the Rydberg atoms are sufficiently
sparse that interactions between them are negligible.

The salient feature of Fig. 1 is the dramatic suppression
of Rydberg excitation for n " 70 and 80 relative to the
isolated-atom (n " 30) excitation curve. As expected, the
suppression is larger for n " 80 due to its stronger vdW
interaction, reaching a factor of 6.4 at the highest inten-
sities shown.

We model the suppression of Rydberg excitation by
solving the Bloch equations for the ground-state and
excited-state amplitudes, cg and ce, of a given atom.
The key point is to include the energy level shift " due
to interactions with nearby Rydberg atoms. If we consider
an np3=2 Rydberg atom located at ri, labeled jpii, the first-
order shift due to its interaction V̂ int with jpki is "ik "
hpipkjV̂int#ri & rk%jpipki, so its total shift is the sum over
all atoms, "i " !k!i "ik. At large separations, "ik is domi-
nated by the vdW interaction corresponding to a pair of
molecular states 1!'

g and 3!'
u , labeled $ " 1 and 2,

respectively [9–11]. For n " 70, C6 " 2:64( 1022 a:u:
for both states.

For simplicity, we consider a spherical domain of ra-
dius Rd and volume Vd which contains several atoms, but
by definition, only a single Rydberg atom jpii. Hence, Rd
is determined using the condition

%
Z

Vd

d3rjce#r; t%j2 " 1; (1)

FIG. 1. Comparison of Rydberg excitation for the unblock-
aded (isolated-atom) 30p state and the blockaded 70p and 80p
states at a peak density of 6:5( 1010 cm&3. Irradiances are
scaled by #n$=30$%3 to account for the n dependence of the
electric dipole transition probability. Insets show the region
near the origin with an expanded scale. The dashed line for
n " 30 is a least-squares fit to the data, while the solid curves
for n " 70 and n " 80 are theoretical predictions, using a
single adjustable scaling parameter & (see text). We measure
the MOT density profile for each run and correct for its effect
on the isolated-atom signals by multiplying the n " 30 results
by 1.29 (n " 70 inset), 1.19 (n " 80 inset) and 1.24 (main
figure, using the average for n " 70; 80).
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MOT size. We use Rabi frequencies of the lower transition
in a range from 3 to 9 MHz, as determined by Autler-
Townes measurements [13]. The beam driving the upper
transition is derived from a frequency-doubled 960 nm
diode laser (Toptica Laser DL-100) that is locked to a
pressure-tuned Fabry-Perot cavity [15] and has a linewidth
of!5 MHz (at 480 nm). To achieve sufficiently large Rabi
frequencies on the upper transition, the 480 nm beam is
focused into the MOT with a full width at half maximum
diameter of the intensity distribution of 16 !m" 1 !m,
which is much less than the MOT size. The Rayleigh
length of the 480 nm beam is 1:1 mm" 0:1 mm, which
is larger than the MOT size. The MOT was run at a higher-
than-usual field gradient (50 G=cm) and with quite small-
diameter laser beams in order to limit the MOT diameter to
500 !m while still having a central atom density of about
5# 109 cm$3. In this configuration, we achieve densities
of a few times 108 cm$3 of high-lying Rydberg states
(principal quantum numbers n % 54–84) in a cylindrical
volume of about 20 !m in diameter and about 500 !m in
length that contains of order 1000 ground-state atoms.

The Rabi frequency on the lower transition is practically
constant in this volume, while the Rabi frequency on the
upper transition falls off with the distance from the beam
axis. As the target Rydberg state is varied from 54D5=2 to
84D5=2, the Rabi frequency of the upper transition at a
beam power of 1.2 mW varies from &5 to &2:5 MHz. To
avoid detector saturation and ionization, which are dis-
cussed below, we typically reduce the intensity of the
upper-transition beam such that only about 50 Rydberg ex-
citations are generated in the above specified volume. Each
excitation is associated with a bubble such as in Fig. 1(b).
As n varies from 50 to 90, the number of ground-state
atoms in each bubble increases from roughly one to ten.
About 700 ns after the excitation pulses, the Rydberg
excitations are field ionized using an approximately linear
field ionization ramp. The liberated electrons are detected
using a micro-channel plate (MCP) detector, and the MCP
pulses are counted. This sequence is repeated up to 5000
times. The resultant probability distributions for the count-
ing results yield the Rydberg atom counting statistics.

In Fig. 2(a), we show a typical Rydberg atom counting
statistics for excitation into the 84D5=2 Rydberg level. A
comparison between the measurement result [histogram in
Fig. 2(a)] and a Poissonian distribution with the same
average [line in Fig. 2(a)] shows that the Rydberg atom
counting statistics is sub-Poissonian. The degree of sub-
Poissonian character is a measure of blockade effective-
ness. As a quantitative parameter characterizing the width
of the distribution we use the MandelQ parameter, defined
as the variance in the count distribution divided by the
mean number of counts minus one, Q % hN2i$hNi2

hNi $ 1 [16].
Values of Q> 0 correspond to super-Poissonian, Q % 0 to
Poissonian, andQ< 0 to sub-Poissonian distributions. The
distribution in Fig. 2(a) is found to have a Q value of
$0:51" 0:04, which qualifies as highly sub-Poissonian.

It is noted that the Q value of the detected number of
Rydberg atoms, henceforth referred to as QD, is not the
same as the Q value of the number of Rydberg atoms
present in the sample before detection, referred to as QA.
While QD is what we measure, QA actually is of higher
fundamental interest. If each Rydberg atom produces a
count with a fixed probability ", which is a physical
property of the utilized MCP detector, then QD % "QA.
Since QA ' $1, our measurement result QD % $0:51
implies that " ' 0:51. An " value of 0.51 is at the lower
limit of the range of typically specified MCP detection
efficiencies for low-energy electrons. The range 0:5 &
" & 0:85 given in Ref. [17] corresponds to $1 & QA &
$0:60 for a measured QD % $0:51. It is concluded that
with certainty QA ( $0:51, and that QA ( $0:60 for the
likely case that the " value of the MCP installed in our
system lies within a typical range.

In the low-density reference experiment shown in
Fig. 2(b), the diameter of the upper-transition (5P3=2 !
84D5=2) laser beam was increased by about a factor of 10
while adjusting its intensity to yield an average of 30
detected Rydberg atoms. The excitation volume in the
reference experiment was about a factor 100 larger than
under the conditions of Fig. 2(a), and the Rydberg atom
density about a factor 100 lower. The reference experiment
yields a Rydberg atom counting statistics that is close to
Poissonian, with a QD value of $0:08" 0:04. This result
reflects the fact that the average Rydberg-atom separation
R in the reference experiment is a factor of order 4 larger
than under the conditions of Fig. 2(a). Consequently, van-
der-Waals and dipole-dipole interactions—which scale as
1=R6 and 1=R3, respectively—do not contribute signifi-
cantly to the results of the reference experiment [Fig. 2(b)].
There, the observed counting statistics is determined by the
variation in ground-state atom number and the low excita-
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FIG. 2. (a) The histogram shows the probability distribution of
the number of detected 84D5=2 Rydberg atoms, obtained from
5000 realizations of the experiment. A highly sub-Poissonian Q
value of $0:51" 0:04 is found. To make the sub-Poissonian
character of the measured distribution more apparent, the histo-
gram is compared with a Poissonian with the same average
(line). (b) Reference experiment at a Rydberg atom density
that is &100 times lower than in (a). A close-to-Poissonian
QD value of $0:08" 0:04 is found.
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And	now	(2017)…	a	few	examples	
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Figure 2. Identification of the crystalline phase.
a, Excitation number versus system length for a one-
dimensional system. Blue circles correspond to the ex-
perimental mean number of Rydberg excitations N

e

after the optimized sweep. The right axis shows the ex-
citation number corrected for the detection efficiency.
The green line is the result of the numerical simulation
for the experimental initial states, taking into account
an initial state filling of 0.8 and length fluctuations of
the order of one site. The grey line shows the classical
(⌦ = 0) prediction. Insets: Measured spatial distri-
bution of Rydberg excitations (left) and corresponding
theory (right) for system lengths ` of 12, 23 and 35
sites. The brightness (light to dark) translates to the
normalized number of excitations. b, Compressibility
 of the prepared states. Blue circles are derived from
the experimental data shown in a using a numerical
derivative. The green line is a direct numerical result
(Methods). All error bars s.e.m.

Rydberg atoms have recently been discussed as a plat-
form for the simulation of quantum magnetism. Espe-
cially, the frozen gas Hamiltonian has been at the focus
of theoretical and experimental interest due to its rich
variety of strongly-correlated phases [5–7]. Introducing
spin-1/2 operators, the Hamiltonian can be rewritten in
the form of an Ising model with long-range spin inter-
actions in an effective transverse (~⌦) and longitudinal
(�~�) magnetic field [6, 8]. In the classical limit, ⌦ = 0
and for � > 0, the many-body ground state corresponds
to crystalline Fock states with a total excitation number
N

e

= hN̂
e

i =
P

ihn̂
(i)
e

i. Consequently, the Rydberg ex-
citation number N

e

forms a complete devil’s staircase [29]
as a function of � in the thermodynamic limit. In a one-
dimensional chain of ` � N

e

lattice sites, the excitation
number increases from N

e

to N
e

+1 at the critical detun-
ings `6~�

c

⇡ 7|C
6

|N
e

6/a6
lat

separating successive crys-
tal states with a lattice spacing a

lat

`/(N
e

� 1) [2]. The
laser coupling introduces quantum fluctuations, whose
effect has been studied in a number of recent theory
works [5–8, 30]. Upon increasing ⌦, it has been predicted
that, in the thermodynamic limit, the system undergoes
a two-stage quantum melting [6, 7] via an incommen-
surate floating solid with algebraic correlations followed
by a Kosterlitz-Thouless transition [6, 7] to a disordered
phase. The corresponding scenario for a finite lattice is
shown schematically in Fig. 1a. While finite size effects
naturally broaden the transitions in the (⌦,�) parameter
space, extended lobes corresponding to crystalline states
of N

e

excitations with vanishing number fluctuations can
be well identified for typical parameters of our experi-

ments.
The preparation of the crystalline states requires a

fast dynamical control due to the short lifetime of the
Rydberg states of typically several tens of microseconds.
Our initial state with all atoms in their electronic ground
state coincides with the many-body ground state of the
system for negative detunings and ⌦ = 0. Since for
small coupling strength ⌦ the energy gap to the first
excited state closes at the transition points �

c

between
successive N

e

-manifolds, ⌦ and � have to be varied sim-
ultaneously in order to maximize the adiabaticity of the
preparation scheme. An intuitive and simple choice of
the path (⌦(t),�(t)) starts with a large negative detun-
ing �

min

at which the coupling ⌦ is switched on [2–4].
Next, the detuning is increased to the desired final blue-
detuned value �

max

> 0, followed by a gradual reduction
of the coupling strength ⌦ to zero. In the final stage of
this last step the energy of several many-body states be-
comes nearly degenerate, as illustrated in Fig. 1b for an
exemplary system of five excitations. These lowest many-
body excited states all belong to the same N

e

-manifold
but feature a finite density of dislocations with respect
to the perfectly ordered classical ground state. In prac-
tice this leads to unavoidable non-adiabatic transitions
at the end of the laser pulse, resulting in non-classical
crystalline states composed of spatially localized collect-
ive excitations [2].

Our experiment started from a two-dimensional degen-
erate gas of approximately 250 to 700 rubidium-87 atoms
confined to a single antinode of a vertical (z-axis) optical
lattice. The gas was driven deep into the Mott-insulating
phase by adiabatically turning on a square optical lat-
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Observation of ultralong-range Rydberg molecules
Vera Bendkowsky1, Björn Butscher1, Johannes Nipper1, James P. Shaffer1,2, Robert Löw1 & Tilman Pfau1

Rydberg atoms have an electron in a state with a very high principal
quantum number, and as a result can exhibit unusually long-range
interactions. One example is the bonding of two such atoms by
multipole forces to form Rydberg–Rydberg molecules with very
large internuclear distances1–3. Notably, bonding interactions can
also arise from the low-energy scattering of aRydberg electronwith
negative scattering length from a ground-state atom4,5. In this case,
the scattering-induced attractive interaction binds the ground-
state atom to the Rydberg atom at a well-localized position within
the Rydberg electron wavefunction and thereby yields giant mole-
cules that can have internuclear separations of several thousand
Bohr radii6–8. Here we report the spectroscopic characterization
of such exoticmolecular states formedby rubidiumRydberg atoms
that are in the spherically symmetric s state and have principal
quantum numbers, n, between 34 and 40. We find that the spectra
of the vibrational ground state and of the first excited state of the
Rydberg molecule, the rubidium dimer Rb(5s)–Rb(ns), agree well
with simple model predictions. The data allow us to extract the
s-wave scattering length for scattering between the Rydberg elec-
tron and the ground-state atom, Rb(5s), in the low-energy regime
(kinetic energy,,100meV), and to determine the lifetimes and the
polarizabilities of the Rydberg molecules. Given our successful
characterization of s-wave boundRydberg states,we anticipate that
p-wave bound states9, trimer states10 and bound states involving
a Rydberg electron with large angular momentum—so-called
trilobite molecules5—will also be realized and directly probed in
the near future.

In 1934, Fermi introduced the ideas of scattering length and pseu-
dopotential to describe the scattering of a low-energy electron from a
neutral atom4. Although the polarization potential for electron–atom
interaction is always attractive, he realized that quantum mechanical
s-wave scattering can give rise to either a positive or a negative scatter-
ing lengthdepending on the relative phase between the ingoing and the
scattered electron waves. Taking this idea farther, Greene et al.5

predicted a novel molecular binding mechanism arising from a low-
energyRydberg electron scattering froman atomwith negative scatter-
ing length.

Fermi’s approach to characterizing the binding interaction that
arises from scattering of a Rydberg electron from a ground-state
atom requires that the binding energy (in frequency units) be smaller
than the Kepler frequency of the Rydberg electron, and that the size of
the electron wavefunction, / n2, be much larger than the range of
interaction, r (which in units of the Bohr radius (a0< 0.529 Å) is
given by r5

ffiffiffi
a

p
(ref. 11), where a is the polarizability of the

ground-state atom). Averaged over many scattering events and
weighted with the local electron density, jYn,l,mj2, the approach effec-
tively leads to a mean-field potential, VMF, between the scattering
partners. If R is the position of the ground-state atom relative to the
ionic core of the Rydberg atom, then the potential is given by

VMF(R)~2pa(k(R))jYn,l,m(R)j2 ð1Þ

and can, depending on the scattering length, a(k(R)), be repulsive
(a. 0) or attractive (a, 0)12. Evidence for these molecular potential
curves was found in theoretical work on alkali/rare-gas scattering13,14

as well as in spectroscopic data of rubidium at high temperatures,
where inhomogeneous line broadenings were observed for low prin-
cipal quantum numbers15.

In a semi-classical approximation, the scattering length is a func-
tion of the relative momentum, k(R), of the two scattering partners.
This k dependence can be expressed as

a(k)~aatomz
p

3
akzO(k2) ð2Þ

where aatom is the zero-energy scattering length12,16. The scattering
length depends on R because the momentum, k, of the Rydberg
electron changes with its position in the Coulomb potential of the
nucleus. Owing to the correspondence principle for large principal
quantum numbers, n, a reasonable ansatz for k(R) (where R5 jRj) is
the classical equation given in ref. 5:

k2(R)

2
~{

1

2n2
z

1

R
ð3Þ

Our focus in this study is on rubidium in its simplest Rydberg state, the
s state (angular quantum number, l5 0). Figure 1 shows the mean-
field potential given by equation (1) and the electron probability
density calculated for the 87Rb(35s) state. (The densities were calcu-
lated using Numerov’s method, including quantum defect correc-
tions17,18. Energy levels and wavefunctions of the molecular potential
were computed using a numerical solver19.) The molecular potential,

15. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany. 2University of Oklahoma, Homer L. Dodge Department of Physics and Astronomy,
Norman, Oklahoma 73072, USA.
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Figure 1 | Electron probability density and molecular potential for the 35s
state. The surface plot shows the spherically symmetric density distribution
of the Rydberg electron in theR–Q plane, (R/2p) |Y35,0,0(R) | 2. Themolecular
potential for the state 3S(5s–35s) (green) is modelled for a polarizability
a5 319 a.u. and a scattering length aRb5218.5a0. Not shown is the
repulsive part of the potential forR, 500a0 that results from a zero crossing
in the scattering length a(k(R)) at approximately 500a0. The potential
supports two vibrational bound states (wavefunctions given in blue) in the
outermost potential wells atR5 1,900a0 with binding energies (in frequency
units) of EB(v5 0)5223.4MHz and EB(v5 1)5210.6MHz.
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Quantum	defects	for	alkali	atoms	

Experiments	⇒			En = � Ry

(n� �nlj)2

Quantum	defects	(Experimental)	

For	Rb:	

Ry = R1
y

⇣
1 +

me

M

⌘�1

R1
y = 10 973 371.568 539 m�1

n � 30



The	“effec6ve”	poten6al		V(r)=-1/r   the coulomb potential for r>rc

To calculate any properties we need wavefunctions. Seaton noticed that 
for both hydrogen and the alkalis much of the potential is a coulomb potential
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Radial	wave-func6on	for	rubidium		

Numerov	algorithm	 		
Zimmerman,	PRA	20,	2251	(1978)	
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Angular	wave-func6on		

Angular part of the wavefunctions

angular part can be solved analytically!

same solution as Hydrogen (with spin-orbit coupling):

spin spherical harmonics
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Rydberg	atoms	are	huge…	Introduction 3
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Figure 0.1: Size of Rydberg atoms compared to different biological objects. The diameter
4a0(n � �0)2 of the classical allowed region of the Rydberg electron is plotted depending on the
principal quantum number for rubidium (quantum defect �0 = 3.135 [32]). Scanning electron mi-
crographs [33] of different biological objects are shown to illustrate the huge size of Rydberg atoms.
They exceed the dimensions of large viruses already at n ⇡ 50. At principal quantum numbers
around n = 70, the size of bacteria, the smallest living objects, is reached.

sensitivity to external fields and strong interactions among each other. Rydberg atoms, for ex-
ample, have been already successfully used as nondestructive probes for weak fields, consisting
of few photons [38] (Nobel Prize 2012 for Serge Haroche). Furthermore, they are discussed as
a building block for gates in quantum information processing [39, 40]. The current state of the
art in this field can be found e.g. in [7].

Bose-Einstein condensates

Also, the study of ultracold atomic gases has become an important test bench of physics
in the past decades, allowing for the study of quantum phenomena in a regime qualitatively
different from the classical world. Based on the work of Satyendra Nath Bose on the statistical
distribution of photons, the quanta of light [41], Albert Einstein predicted a phase transition in
a gas of non-interacting atoms [42]. As a consequence of quantum statistics, the particles in the
gas are then condensed into the state of lowest energy. For a long time, this new phase, termed
Bose-Einstein condensate (BEC), had no practical impact.
After the first observation of superfluidity in liquid helium [43, 44], Fritz London pointed
out, that this phenomenon could be connected to Bose-Einstein condensation [45]. Although

J.	Balewski,	PhD	thesis	
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Dipole	matrix	element	from	low	lying	states	
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Rydberg	life6mes	

Beterov	et	al.,	Phys.	Rev.	A	79,	052504	(2009)	
mode, n̄!, given by the Planck distribution at temperature T,

n̄! =
1

exp!!nn!/kT" − 1
, !2"

where k is the Boltzmann constant, and through the Einstein
coefficient,

W!nL → n!L!" = A!nL → n!L!"n̄!. !3"

Radiative lifetime "0 of a Rydberg state is determined by the
total rate of spontaneous transitions from nL state to all
lower-lying states:

1
"0

= #0 = #
EnL$En!L!

A!nL → n!L!" . !4"

The total rate of BBR-induced depopulation can be written in
a similar form, taking into account transitions to both lower
and higher states:

#BBR = #
n!

A!nL → n!L!"
1

exp!!nn!/kT" − 1
. !5"

Finally, effective lifetime of the nL Rydberg state is deter-
mined by the sum of the rates #0 and #BBR of spontaneous
and BBR-induced nL→n!L! transitions, respectively:

1
"ef f

= #0 + #BBR =
1
"0

+
1

"BBR
. !6"

A calculation of effective lifetimes is thus reduced to a cal-
culation of the radial matrix elements R!nL→n!L!". Exact
analytical solution exists only for a hydrogen atom $17%. For
alkali-metal atoms, various numerical methods were devel-
oped. The Hartree-Fock and multiconfiguration-interaction
methods require long calculation time. The Coulomb ap-
proximation method was applied by Farley and Wing $4% and
Spencer et al. $6% for numerical calculations and provided
good agreement with experimental results. Theodosiou $8%
and He et al. $9% used a method of model potential with
different atomic potential functions.

A quasiclassical approximation is most suitable for states
with large principal quantum numbers n$20. Therefore, in
this paper we used a quasiclassical method developed by
Dyachkov and Pankratov $18% to calculate radial matrix ele-
ments. This approach is helpful for calculations where large
number of dipole transitions must be considered. The authors
of Ref. $18% showed that by the optimal choice of the mean

5 10 15 20 25 30 35 40
0

2000

4000

6000

8000

10000

12000

14000

16000 Spontaneous
BBR-induced

Principal quantum number ( )n’

T
ra

n
s
it
io

n
ra

te
(s

)
-1

Rb 30

=300K

S

T
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Summary:	Rydberg	have	exaggerated	proper6es	

are very close to the ones of hydrogen. In particular, the
energy of a state ∣ ñn l j m, , , j is given by

( )
( )

d
=

-
-

E
n

Ry
1n l j

lj
, , 2

where �Ry 13.6 eV is the Rydberg constant, and the
quantum defects dlj are species-dependent corrections
accounting for the effects of the finite size of the ionic core
(for heavy alkali atoms, .d » 0l 3 ).

The typical size of the electronic wavefunction for a state
∣ ñn l j m, , , j is in the order of n a2

0, where a0 is the Bohr radius.
This size reaches hundreds of nanometers for the values of n
used in experiments (typically from ~n 20 to 100), and is at
the origin of the exaggerated properties of Rydberg states: the
electric dipole matrix element between two neighboring states
scales as n2, while the energy spacing between adjacent
Rydberg levels, which scales as -n 3, corresponds to milli-
meter-wave transitions. This gives the Rydberg atoms a long
lifetime t ~ n3, and a very strong sensitivity to electric fields:
the polarizability scales as n7. This means that two nearby
Rydberg atoms undergo very strong dipole–dipole interac-
tions, that can reach tens of MHz for the separation of several
microns between the atoms.

The effects of Rydberg–Rydberg interactions were
experimentally observed in 1981 [11], at a time when Ryd-
berg atoms were used as a test bed for the study of atom–light
interactions [12]. The interest in interacting Rydberg atoms
was renewed at the end of the nineties, due to the novel
possibilities offered by the availability of laser-cooled sam-
ples in which the atomic motion is negligible on relevant
experimental timescales, thus realizing a ‘frozen Rydberg
gas’ [13, 14]. These pioneering studies motivated theoretical
proposals [2, 3] suggesting the use of the Rydberg blockade
for quantum information processing [15].

2.2. Early proposals: Rydberg blockade and quantum gates

The principle underlying the Rydberg blockade is shown in
figure 1. Consider the ground state ∣ ñg of an atom coupled to a
Rydberg state ∣ ñr with a resonant laser with a Rabi frequency
Ω. In the case of two atoms, the collective ground state ∣ ñgg is
still resonantly coupled to the states ∣ ñgr and ∣ ñrg containing a
single Rydberg excitation. However, the doubly-excited state
∣ ñrr is shifted out of resonance by the strong van der Waals
interaction UvdW between the two atoms. In the limit

� � WUvdW , i.e. for a small enough distance between the

atoms, the double excitation is thus energetically forbidden:
this is the Rydberg blockade1.

Introducing the two collective states ∣y ñ =o

(∣ ∣ )ñ o ñgr rg 2 we observe that the collective ground state
∣ ñgg is not coupled to ∣y ñ- , while its coupling to ∣y ñ+ is W2 .
Since ∣ ñrr is shifted out of resonance by the blockade condi-
tion, we end up with a two-level system comprising ∣ ñgg and
∣y ñ+ , coupled by a collectively enhanced Rabi frequency
W 2 . Starting from ∣ ñgg and applying the laser for a duration

( )p W 2 thus prepares the entangled state ∣y ñ+
2.

The above arguments extend to >N 2 atoms if all
pairwise interactions meet the blockade criterion, i.e. if all the
atoms are contained within a ‘blockade sphere’ of radius

[ ( )]�= WR Cb 6
1 6 (this blockade radius can reach several

microns for typical experimental parameters). One gets a
collectively enhanced Rabi oscillation at frequency W N
between the collective ground state ∣ ¼ñggg and the entan-
gled W-state

∣ (∣ ∣ ∣ ) ( )ñ = ¼ñ + ¼ñ+¼+ ¼ ñW
N

rgg grg gg r
1

, 2

where a single Rydberg excitation is delocalized over all the
atoms.

The Rydberg blockade was proposed in [2] as a means of
implementing fast quantum gates with neutral atoms. The
principle is shown in figure 2. The qubits are encoded in two
long-lived hyperfine levels ∣ ñ0 and ∣ ñ1 of the ground state of
each atom, which can be separately addressed by lasers that
couple state ∣ ñ1 to the Rydberg state ∣ ñr (figure 2(a)). The two
atoms are close enough so that the Rydberg blockade prevents
the excitation of ∣ ñrr . When applying the pulse sequence
shown in figure 2(b), if any of the qubits is initially prepared
in ∣ ñ1 , then the blockade makes one of the lasers off-resonant,
one and only one of the atoms undergoes a p2 rotation, and
the wavefunction of the system gets a minus sign at the end of

Table 1. Properties of Rydberg states.

Property -n scaling Value for S80 1 2 of Rb

Binding energy En
-n 2 −500 GHz

Level spacing -+E En n1
-n 3 13 GHz

Size of wavefunction á ñr n2 500 nm
Lifetime τ n3 200 μs
Polarizability α n7 ( )-1.8 GHz V cm 2/
van der Waals coeffi-
cient C6

n11 4 · mTHz m6

Figure 1. Principle of the Rydberg blockade. (a) A resonant laser
couples, with strength Ω, the Rydberg state ∣ ñr and the ground state
∣ ñg of an atom. (b) For two nearby atoms, the van der Waals
interaction UvdW shift the doubly-excited state ∣ ñrr , preventing the
double excitation of the atomic pair when � � WUvdW .

1 In the case of an incoherent excitation with a laser of linewidth γ, the
blockade condition reads � �gUvdW .
2 Strictly speaking, if r1 and r2 denote the positions of atoms 1 and 2, the
entangled state ∣y ñ+ reads ( ∣ ∣ )· ·ñ + ñrg gre e 2k r k ri i1 2 , where k is the
wavevector of the laser-field coupling ∣ ñg to ∣ ñr . For simplicity, we will omit
these phase factors in this review, except in cases where they are important.

2
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Coherent	Rydberg	excita6on	(rubidium)	
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Electronic	detec6on	of	Rydberg	atoms	
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Detec6on	of	Rydberg	atoms	

“Op6cal”	detec6on	

the first excitation is resonant, while the sequential coupling to many-
body states with larger number of excitations is rapidly detuned by the
interactions. In fact, the rapid variation of the van der Waals potential
with distance prevents the excitation of all those states where Rydberg
atoms are separated by less than the blockade radius, Rb, de-
fined by BV~{C6

!
R6

b. The existence of this exclusion radius is ex-
pected to have a striking consequence: whereas the total many-body
state exhibits finite-range correlations on a scale of Rb (ref. 13), its
high-density components with a Rydberg density close to 1

!
R2

b should
display a crystalline structure, meaning that the position of the
Rydberg atoms is correlated over a distance comparable to the system
size.

The excitation dynamics of all configurations should occur in an
entirely coherent fashion, resulting in highly non-classical many-body
states. The approximate rotational symmetry of our system leads to
symmetric superpositions of all microscopic configurations with dif-
ferent orientation but identical relative positions of the Rydberg atoms.
Also, as the coupling addresses all states within an energy range ,BV,
it produces a coherent superposition of many-body states with dif-
ferent numbers of excitations and slightly different separation between
the Rydberg atoms (Fig. 1a). This collective nature of the excited
many-body states dramatically changes the timescale on which their
dynamics occurs. The coupling strength to the state with a single
excitation is enhanced by a factor

ffiffiffiffiffiffiffi
Nat
p

?1 (ref. 8) and the coupling
to states with Ne . 1 is similarly enhanced, with Nat replaced by the
number of energetically accessible configurations in each Ne-manifold3.

Our experiments began with the preparation of a two-dimensional
degenerate gas of 150–390 87Rb atoms confined to a single antinode of
a vertical (z-axis) optical lattice31. The gas was brought deep into the
Mott-insulating phase by adiabatically turning on a square optical
lattice with period alat 5 532 nm in the x–y plane. Within the system
radius, R 5 3.5mm to 5mm, the probability of a lattice site being occu-
pied by a single atom was typically 80%. The atoms were then initi-
alized in the hyperfine ground state jgæ ; j5S1/2, F 5 2, mF 5 –2æ

and coupled to the Rydberg state jeæ ; j43S1/2, mJ 5 –1/2æ, using the
standard notation for the fine and hyperfine structure (Fig. 1b). The
coupling was achieved through a two-photon process via the inter-
mediate state j5P3/2, F 5 3, mF 5 –3æ using lasers of wavelengths
780 nm and 480 nm and s– and s1 polarization, respectively (Fig. 1b
and Methods). The resulting two-photon Rabi frequency was
V/(2p) 5 170(20) kHz (the number in parentheses denotes the uncer-
tainty of the last digit), yielding a blockade radius of Rb 5 4.9(1)mm.
Following the initial preparation, we suddenly switched on the excit-
ation lasers and let the system evolve for a variable duration t. After
the excitation pulse, we detected the Rydberg excitations by first
removing all atoms in the ground state with a resonant laser pulse,
then de-exciting the Rydberg atoms to the ground state via stimulated
emission towards the intermediate state (Fig. 1b and Methods) and
finally recording their position using high-resolution fluorescence
imaging31. The accuracy of the measurement was limited by the pro-
bability, 75(10)%, of detecting a Rydberg atom and by a background
signal due to on average 0.2(1) non-removed ground state atoms per
picture (Supplementary Information). The spatial resolution of our
detection technique is limited to about one lattice site by the residual
motion of the atoms in the Rydberg state before de-excitation (Sup-
plementary Information). Repeating the experiment many times
allowed for sampling the different spatial configurations of Rydberg
atoms constituting the many-body state and to measure their respec-
tive statistical weight.

b
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Figure 1 | Schematics of the many-body excitation. a, Energy spectrum in the
absence of optical driving. States with more than one excitation form a broad
energy band (shown as a grey shading for Ne 5 2 on the left and Ne 5 3 on the
right) above the degenerate manifold comprising the ground state and all singly
excited states. For each excitation number Ne . 1, the states with lowest energy
correspond to spatially ordered configurations, which maximize the distance
between the Rydberg excitations. The minimal interaction energy (black
arrows) is determined by the finite system size and increases with Ne. Possible
spatial configurations of the excitations (blue dots) in the initial Mott-insulating
state (black dots) are shown schematically as circular insets next to their
respective interaction energy. The blockade radius is depicted by the blue
shaded disk around the excitation. b, Simplified level scheme of 87Rb,
showing the transitions used for the Rydberg excitation and detection. See
text for details.
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Figure 2 | Spatially ordered components of the many-body states. Spatial
distribution of excitations for the observed microscopic configurations sorted
according to their number of excitations, Ne 5 2–5 (top to bottom). a, Examples
of false-colour fluorescence images in which de-excited Rydberg atoms are
directly visible as dark-blue spots. b, Histograms of the spatial distribution of
Rydberg atoms obtained after centring and aligning the individual microscopic
configurations to a reference axis (Methods). The initial atom distribution had a
diameter of 7.2(8)mm and 10.8(8)mm for Ne 5 2–3 and Ne 5 4–5, respectively.
c, Theoretical prediction from numerical simulations of the excitation
dynamics governed by the many-body Hamiltonian of equation (1) for the
same conditions as in the experiment (Supplementary Information). Colour
scale at right of each row applies only to the sub-panels of b and c in that row.
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Summary	of	interac6on	between	Rydberg	atoms	

Summary	of	Palaiseau	
experiments	(2013-2015)	
using	individual	atoms	

and have been used to demonstrate high fidelity gates
and small algorithms !Blatt and Wineland, 2008". Neu-
tral atom qubits represent another promising approach
!Bloch, 2008". They share many features in common
with trapped ion systems including long-lived encoding
of quantum information in atomic hyperfine states and
the possibility of manipulating and measuring the qubit
state using resonant laser pulses.

Neutral atoms distinguish themselves from ions when
we consider their state dependent interaction properties,
which are essential for implementing two-qubit quantum
gates. Figure 1 shows the dependence of the two-particle
interaction strength on separation R for singly charged
ions, ground-state neutral atoms, and Rydberg atoms.
The interaction of ground-state atoms is dominated by
1/R6 van der Waals forces at short range and 1/R3 mag-
netic dipole-dipole forces beyond about 30 nm. At spac-
ings greater than 1 !m the interaction is weak, less than
1 Hz in frequency units, which implies that an array of
neutral atom qubits can be structurally stable. On the
other hand, excitation of Rb atoms to the 100s Rydberg
level results in a very strong interaction that has reso-
nant dipole-dipole character, scaling as 1/R3, at short
distances and van der Waals character, scaling as 1/R6,
at long distances. As will be discussed in Sec. II the char-
acteristic length scale Rc where the Rydberg interaction
changes character depends on the principal quantum
number n. For the 100s state the crossover length is
close to Rc=9.5 !m, and at this length scale the ratio of
the Rydberg interaction to the ground-state interaction
is approximately 1012.

The applicability of Rydberg atoms for quantum infor-
mation processing, which is the central topic of this re-
view, can be traced to the fact that the two-atom inter-
action can be turned on and off with a contrast of 12
orders of magnitude. The ability to control the interac-
tion strength over such a wide range appears unique to
the Rydberg system. We may compare this with trapped
ions whose Coulomb interaction is much stronger but is
always present. The strong Coulomb interaction is ben-
eficial for implementing high fidelity gates !Benhelm et
al., 2008b" but the always on character of the interaction
makes the task of establishing a many-qubit register ap-

pear more difficult than it may be for an array of weakly
interacting neutral atoms. Several approaches to scal-
ability in trapped ion systems are being explored includ-
ing the development of complex multizone trap tech-
nologies !Seidelin et al., 2006" and anharmonic traps !Lin
et al., 2009". We note that some of the attractive features
of Rydberg-mediated interactions may also be appli-
cable to trapped ion systems !Müller et al., 2008".

A. Rydberg-mediated quantum gates

The idea of using dipolar Rydberg interactions for
neutral atom quantum gates was introduced in 2000
!Jaksch et al., 2000" and quickly extended to a meso-
scopic regime of many-atom ensemble qubits !Lukin et
al., 2001". The basic idea of the Rydberg blockade two-
qubit gate is shown in Fig. 2. When the initial two-atom
state is |01# $Fig. 2!a"% the control atom is not coupled to
the Rydberg level and the target atom picks up a "
phase shift. When the initial state is |11# both atoms are
coupled to the Rydberg level. In the ideal case when the
two-atom “blockade” shift B due to the Rydberg inter-
action is large compared to the excitation Rabi fre-
quency #, excitation of the target atom is blocked and it
picks up no phase shift. The evolution matrix expressed
in the computational basis &|00#,|01#,|10#,|11#' is

U =(
1 0 0 0
0 − 1 0 0
0 0 − 1 0
0 0 0 − 1

) , !1"

which is a controlled-Z !CZ" gate. As is well known
!Nielsen and Chuang, 2000" the CZ gate can be readily
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FIG. 2. !Color online" Rydberg blockade controlled phase gate
operating on input states !a" |01# and !b" |11#. Quantum infor-
mation is stored in the basis states |0#, |1# and state |1# is
coupled to a Rydberg level *r# with excitation Rabi frequency
#. The controlled phase gate is implemented with a three
pulse sequence: !1" " pulse on control atom *1#→ *r#, !2" 2"
pulse on target atom *1#→ *r#→ *1#, and !3" " pulse on control
atom *r#→ *1#. !a" The case where the control atom starts in |0#
and is not Rydberg excited so there is no blockade. !b" The
case where the control atom is in |1# which is Rydberg excited
leading to blockade of the target atom excitation.
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tions at this time include trapped ions !Blatt and Wine-
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Lecture	1:	 	Rydberg	atoms	and	their	interac4on	

Lecture	2:	 	Rydberg	Blockade	and	applica4on	to	QIP	

Lecture	3:	 	Quantum	simula4on	&	Quantum	Op4cs	with	
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Blockade	with	2	individual	atoms	
	

Applica4on	to	gates	and	entanglement	
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Collec6ve	excita6on	and	Rydberg	blockade	
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Collec6ve	excita6on	in	sub-poissonian	ensemble	(MPQ,	Garching)	

illuminating the sample with the coupling lasers for varying
duration T. For each T, we repeat the experiment 25–30
times and extract the mean Rydberg number Ne [Fig. 2(a)].
The dramatic acceleration of the Rabi oscillation with
N is clearly visible in the data. Additionally, we compare
the spatial distribution of the Rydberg atoms (integrated
over all T) to the initial distribution of ground-state atoms.
Within statistical uncertainty, we find a flat distribution
consistentwith the uniform coupling assumption [Fig. 2(b)].
We experimentally confirm the picture of a fully dipole
blockaded sample by extracting the histogram of the
Rydberg excitation numbers ne both integrated over the

whole observation time T and as well at the π-pulse time Tπ .
For sample sizes up to 131 atoms, the probability of
measuring doubly excited states with two detected
Rydberg atoms is below 1%. We obtain typically 1–4
images with two excitations per 500–800 shots. This is
compatible with the expected number of falsely detected
Rydberg atoms due to imperfect removal of ground-state
atoms in the detection process [29]. For the largest sample
used in our experiments, the blockade starts to break down
and the probability to detect twoRydberg atoms increases to
4.8(1.0)% (27 events per 564 shots). None of the data shown
here are corrected for the detection efficiency, and the
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FIG. 1. Superatom preparation. (a) Illustration of the symmetric ground and singly excited state (W state). Left: N-atom collective
Bloch sphere with its basis states (labeled by excitation numbers ne) and coupled states highlighted [south pole (ne ¼ 0) and singly
excited state (ne ¼ 1), represented by the red plane]. The small pictograms above and below the sphere depict the lattice system with
atoms in the ground (red) and Rydberg (blue) states. The dashed red line indicates a zoom into the subspace spanned by the lowest two
states. The Husimi distribution of these states and their enhanced coupling ΩN is shown in the center. This accessible state space defines
a superatom represented by the standard Bloch sphere on the right. (b) Atom-number histograms of the initially prepared samples (blue
bars) with Gaussian fits (solid green line). The numbers give the mean and standard deviation for each data set. Measured and
reconstructed occupation of lattice for exemplary initial states is depicted above the respective histograms; see the schematic pictograms
in (a). The Poissonian distribution with the same mean atom number is shown as a reference (dashed green line). (c) Averaged initial
ground-state atom distributions for the respective histograms above. The size of blockade radius Rb is shown by the blue bar. (d) Rabi
oscillation data (blue points) and sinusoidal fits with exponentially decaying contrast (solid gray line) forN ¼ 7.7ð2.2Þ andN ¼ 131ð7Þ.
The red line shows the same fit on an axis scaled to the number of ground-state atoms N (right axis). All error bars denote the standard
error of the mean (s.e.m.).
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ΩN . Indeed, we find a peaking quality factor for N ¼ 131
due to the increasing oscillation frequency but constant
decay time τ ≈ 1 μs in the fully blockaded regime [inset of
Fig. 3(a)]. Among the limiting factors for the coherence
time are residual atom number and coupling power fluc-
tuations [8(2)%]. However, these alone cannot explain
the observed decay [inset of Fig. 3(a)]. For small atom
numbers, additional decoherence might be due to phase
noise and slow frequency drifts of the lasers, while the
inhomogeneity in the Rabi coupling becomes significant at
larger N. Additionally, weak coupling to pair potentials
involving nearby Rydberg states would result in an
approximately size-independent decoherence mechanism
that might contribute to the observed dephasing [9].
Next to the collective enhancement of the optical

coupling, the structure of the excited state itself
bears the marks of the strong particle correlations. The

unambiguous proof that the experimentally prepared
excited state of the superatom j ~Wi is indeed the N-particle
entangled W state would require full state tomography [39],
which is not feasible in our setup. However, we will show
that under few plausible assumptions, the experimental
observations are incompatible with the expectations for a
fully separable state. To this end, we follow the ideas
developed in Ref. [8] to detect entanglement between the
atoms described by the many-body state j ~Wi via the overlap
α ¼ jhWj ~Wij2 with the W state. The overlap α of any fully
separable N-atom state jΦi ¼ jϕ1i ⊗ … ⊗ jϕNi, where
jϕii describes the state of the ith two-level atom, is bounded
by αmax (approximately 0.37 for largeN), such that α > αmax
necessarily requires entanglement. Furthermore, for any
k-atom inseparable (entangled) state, there is a maximum
overlap αðkÞmax, which enables us to infer the minimum number
of entangled particles k from a given α. Especially, the
minimum fraction of entangled particles k=N is directly
given by α if α > 0.5. The preceding discussion can be
generalized to the experimentally relevant mixed states using
the density-matrix formalism [8].
The remaining challenge to extract α from the exper-

imental data requires three conditions to be met. These are,
first, maximally one Rydberg excitation in the system;
second, the absence of shot-to-shot fluctuating relative
phases in the sample; and, third, symmetric coupling to the
Rydberg state. The first condition, which especially pro-
hibits the use of any postselection of the experimental data,
is well met for all but the largest superatoms. Also, the
second requirement is fulfilled, since motional dephasing is
absent due to the localization of each atom in the Mott
insulating state in the optical lattice. Furthermore, the
extension of the two-dimensional system in the direction
of the excitation light wave vector k is vanishing such that
there is no spin wave [40] present and k · ðri − rjÞ ¼ 0 for
any two atoms i; j located at ri and rj. The third and last
condition is also fulfilled given that effects due to the small
coupling inhomogeneity of our lasers are negligible on the
experimentally investigated time scale. In the subspace of
zero and one excitation, the spatially uniform Rabi driving
couples only the symmetric states j0i and jWi. Population
in any of the N − 1 orthogonal states shows no dynamics in
that subspace but leads to a reduction of the oscillation
amplitude CðtÞ of the Rabi oscillations. Hence, CðtÞ gives a
lower bound for the overlap αðtÞ [41]. We extract CðtÞ ¼
ηe−t=τ from the fitted exponentially decaying envelope of
the Rabi oscillation data.
In Fig. 3(b), we show that CðtÞ at the Rabi oscillation

maximum after the first half Rabi cycle is above the
threshold for entanglement for all superatom sizes that
fulfil the above-mentioned criteria, even without correcting
for the detection efficiency η. For longer times, CðtÞ decays
into the classically allowed region. We exclude the
N ¼ 185 superatom from the analysis due to the small
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(a) Extracted values of ΩN (blue points) versus average initial
atom number N for the data shown in Figs. 1(d) and 2 with a
power-law fit (green line). The inset shows the exponential decay
time of the Rabi oscillations (blue points). The expected decay
based on the reference sample atom-number fluctuations (dark
green shading) and additionally taking into account noise in the
pulse area (light green shading) are shown for comparison.
(b) Extracted oscillation amplitude C of the collective Rabi
oscillation versus atom number N after one, three, and five half
cycles of oscillation (red data points with increasing lightness,
shifted slightly horizontally for better visibility). The gray points
show the oscillation amplitude after one half cycle corrected for
the measured detection efficiency. The blue shaded area bounded
by the lowest blue line includes all classical states with fully
separable density matrices. Different bounds for k-particle
separability are additionally shown by the blue lines. Error bars
in (a) take experimental day-to-day variations of the single-atom
Rabi frequency Ω (10%) and the detuning ($200 kHz) into
account. All error bars in (b) are 1σ statistical uncertainty from
the fits.
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Entanglement	of	two	atoms	using	the	Rydberg	blockade	

Wilk	et	al.,	PRL	104,	010502	(2010)		



Extract	the	fidelity:	

Measure	the	density	matrix:	
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Fpairs	=	0.75	±	0.07	

⇢
exp

= F | 
+

ih 
+

|+ ⇢
junk



control target 

D.	Jacksch	et	al.,	PRL	85,	2208	(2000)	

Sequence:	
πA	–	2πB	–	πA	

	

Table	of	truth:	
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From	π-gate	to	CNOT	
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Uπ
11 	→ 	10 		
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01 	→ 	01			
00 	→ 	00	

Quantum	gate	using	Rydberg	blockade	

11 	→ 	11 	→		11 	→ 		11	
10 	→ 	10		→		-10	→		-10	
01 	→ 	r1	 	→		r1	 	→		-01	
00 	→ 	r0	 	→		r0	 	→		-00	



Table	of	truth:	check	blockade	

Isenhower	et	al.,	PRL	104,	010503	(2010)	
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We discuss techniques to generate long-range interactions in a gas of ground state alkali atoms, by

weakly admixing excited Rydberg states with laser light. This provides a tool to engineer strongly

correlated phases with reduced decoherence from inelastic collisions and spontaneous emission. As an

illustration, we discuss the quantum phases of dressed atoms with dipole-dipole interactions confined in a

harmonic potential, as relevant to experiments. We show that residual spontaneous emission from the

Rydberg state acts as a heating mechanism, leading to a quantum-classical crossover.

DOI: 10.1103/PhysRevLett.104.223002 PACS numbers: 32.80.Ee, 03.75.!b, 34.20.Cf

There is currently significant interest in the physics of
dipolar quantum degenerate gases [1]. Strong long-range
dipole-dipole interactions promise the realization of novel
many-body phases in neutral gases, such as self-assembled
crystals [2], topological superfluids and quantum phases
with hidden topological order [3]. The regime of strong
dipolar couplings is easily accessible with interacting elec-
tric dipole moments, as realized, in particular, in quantum
gases with polar molecules prepared in their rovibrational
ground state [4]. In contrast, quantum gases of ground state
atoms typically interact via the much smaller magnetic
interactions [5]. The question, therefore, is to what extent
this regime of strong dipolar interactions can also be
realized with present atomic gases experiments with alkali
atoms. Here we propose and investigate a setup where the
huge electric dipole moments d" n2 [6–8] of atomic
Rydberg states with principal quantum number n are
weakly admixed to the atomic ground state, thus providing
an atomic gas of interacting effective electric dipoles com-
parable to the case of polar molecules. A central question,
and the main difference to the molecular case, is decoher-
ence and heating mechanisms associated with spontaneous
emission from Rydberg states, and possible inelastic colli-
sions. Below we show that (i) dipolar crystals can be
realized with Rydberg-dressed atoms confined to two di-
mensions, with negligible collisional losses, and
(ii) spontaneous emission !r provides an intrinsic heating
mechanism, allowing the study of thermalization phe-
nomena with full tunability of system parameters. We
study the associated crystal melting with molecular dy-
namics calculations.

The setup we have in mind is illustrated in Fig. 1: we
propose to weakly couple with laser light the ground state
jgi of each atom to a Stark-split Rydberg state jri with
large dipole moment d0 in the kilodebye range. For large
enough detuning ! from resonance and interparticle dis-
tances, interactions are of the dipole-dipole type V3D

int /
ð"=!Þ4d20=r3, with" the Rabi frequency. By confining the

particles to a 2D plane using an optical field, the effective
in-plane interactions V2D

int are then purely repulsive, with
negligible collisional losses. This opens the way to the
study of the many-body phases of 2D dipoles in these
systems. As an illustration, we show the existence of
mesoscopic supersolids and crystals with Rydberg-dressed
bosonic atoms under realistic conditions of in-plane har-
monic confinement, using exact quantum Monte Carlo
simulations. Residual spontaneous emission !eff "
ð"=!Þ2!r from the Rydberg state introduces an intrinsic
heating mechanism, driving the quantum phases into the
classical regime. We study the quantum-classical crossover
by means of molecular dynamics simulations, and show
the emergence of a dynamical thermalization time scale in
these systems.

FIG. 1 (color online). (a) Sketch of the energy levels constitut-
ing the Stark fan of an alkali metal atom exposed to an electric
field. jgi and jri are coupled by a laser with Rabi frequency "
and (blue) detuning !. !r is the spontaneous emission from jri,
with momentum @kR of the photon recoil. (b) Born-
Oppenheimer potentials in the x-y-plane in the dressed picture.
R0 is the resonant Condon point. The effective interaction
potenti.al V3D

int ðrÞ is the higher-energy curve (thick line). Level
crossings occur for Rn < R0. Inset: blowup of V

3D
int ðrÞ (solid line)

compared to 1=r3 (dashed line).
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Spin squeezing of atoms by the dipole interaction in virtually excited Rydberg states
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We show that the interaction between Rydberg atomic states can provide continuous spin squeezing of atoms
with two ground states. The interaction prevents the simultaneous excitation of more than a single atom in the
sample to the Rydberg state, and we propose to utilize this blockade effect to realize an effective collective spin
Hamiltonian Jx

2!Jy
2 . With this Hamiltonian the quantum-mechanical uncertainty of the spin variable Jx!Jy

can be significantly reduced.

DOI: 10.1103/PhysRevA.65.041803 PACS number!s": 42.50.!p, 32.80.!t

The sizable dipole interaction between atoms that have
been transferred with pulsed laser fields to highly excited
Rydberg states has been proposed #1,2$ as a mechanism for
entanglement operation on the state of neutral atoms. A
‘‘Rydberg blockade’’ effect realized by the dipole interaction
prevents more than one atom to enter a Rydberg state at a
time. Hence, the evolution of one atom can be conditioned
on the state of another one as required for a two-qubit gate in
a quantum computer #1$. The Rydberg blockade effect can be
used in a multistep procedure to prepare any collective sym-
metric state of an entire atomic ensemble #2$.
In this paper, we propose to use the Rydberg blockade

effect in an easier way that uses only continuous laser fields
to realize the particular collective states called spin squeezed
states. Spin squeezing refers to the collective spin J!"% iS! i of
a collection of spin 1/2 particles, for which the Heisenberg
inequality assures &Jx&Jy'!(Jz)!/2, (*"1). A state whose
mean spin is along z and in which the width of the distribu-
tion of Jx is reduced so that &Jx#!!(Jz)!/2 is called spin
squeezed. The spin notation represents the state of an en-
semble of two-level atoms, where the two states are repre-
sented as the Sz"$1/2 eigenstates of a spin 1/2 particle.
Spin squeezing is a useful property since reduced spin fluc-
tuations imply an improvement of the counting statistics for
the number of atoms in specific states, i.e., improved resolu-
tion in spectroscopy and in atomic clocks #3,4$.
Recently, a number of proposals for spin squeezing and

atomic noise reduction has been made involving absorption
of broadband squeezed light #5,6$, collisional interactions in
two-component condensates #7,8$, and quantum nondemoli-
tion detection of atomic populations #9–11$. In the work pre-
sented here, an atomic gas is illuminated with lasers that
couple long-lived states !a) and !b) to a Rydberg state !r) .
The lasers are far detuned so that the population in the Ryd-
berg state is small and their effect is described by an effec-
tive Hamiltonian H acting on the states !a) and !b). We first
show how nonlinearities appear in the simple case of the
lightshift produced by a single laser. The Hamiltonian Jz

2 is
realized and squeezing will occur. This Hamiltonian, how-
ever, has the drawback that the squeezing axis depends on
the interaction time and on the total number of atoms. Thus,
we propose a way to realize the Hamiltonian Jx

2!Jy
2 that

enables stronger squeezing and which also presents the ad-
vantage that the squeezing axis is stationary #12$.

Let us consider the situation depicted in Fig. 1, where an
ensemble of N atoms is illuminated by a laser field detuned
by & from resonance of the transition !a)→!r). If the inter-
nal state of the atoms is initially symmetric with respect to
exchange of atoms, we can consider only the symetric states
and a basis is formed by the states !na ,nr), where na is the
number of atoms in the state !a), nr is the number of atoms
in the state !r), and the remanining N!na!nr atoms popu-
late the state !b) . The state !na,0) is coupled with the ampli-
tude !na+ to !na!1,1) which, in turn, is coupled to the
state !na!2,2) with the amplitude !2!na!1+ . If the laser
is sufficiently weak, the population in the state with nr%0 is
very small, and the only effect of the laser is to shift the
energy of the states !na,0). The expression for the light shift
to fourth order in the laser field amplitude is

&Ena
"!na

+2

&
&na

2 +4

&3 !
1
2&

2na!na!1 "+4

&2 , !1"

where the last term is due to a two photon transition to the
state !na!2,2). The terms proportional to na

2 in &Ena
cancel

and the light shift is proportional to na as expected for non-

FIG. 1. Laser configuration and relevant states for calculation of
the light shift to fourth order in the presence of a single laser. !a" the
energy levels of a single atom. !b" the energy levels of a collection
of atoms: the upper part of the figure shows how interaction causes
an upward or downward shift Uint of the state with two Rydberg
excited atoms.
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Interactions between Rydberg-dressed atoms
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We examine interactions between atoms continuously and coherently driven between the ground state and a
Rydberg state, producing “Rydberg-dressed atoms.” Because of the large dipolar coupling between two Rydberg
atoms, a small admixture of Rydberg character into a ground state can produce an atom with a dipole moment
of a few debye, the appropriate size to observe interesting dipolar physics effects in cold atom systems. We have
calculated the interaction energies for atoms that interact via the dipole-dipole interaction and find that because
of blockade effects, the R dependent two-atom interaction terms are limited in size and can be R independent
up until the dipolar energy is equal to the detuning. This produces R dependent interactions different from the
expected 1/R3 dipolar form that have no direct analogy in condensed-matter physics and could lead to interesting
quantum phases in trapped Rydberg systems.

DOI: 10.1103/PhysRevA.82.033412 PACS number(s): 32.80.Rm, 05.30.Rt, 31.30.jh

I. INTRODUCTION

There have been numerous theoretical predictions of
interesting phases of matter in ultracold atomic systems
with long-range interactions, including dipolar crystals [1–4],
supersolids [4–6], striped and checkerboard phases [5–7],
and others [8]. These calculations have generally assumed
the existence of ground-state polar molecules with dipole
moments in the range (2–5)ea0. Although there have been
dramatic accomplishments recently in the production of
ground-state polar molecules [6], they have yet to be used
for such dipolar many-body physics and are challenging to
produce. As has been pointed out by [1], Rydberg atoms
might also be able to fill this role. The maximum dipole-
dipole interaction between two Rydberg atoms with principle
quantum number n is of order n4ea0, orders of magnitude
larger than needed for predicted dipolar effects and in fact so
large that the interparticle forces would overwhelm any optical
trapping forces from an optical lattice, for example. In addition,
the typical lifetime of a Rydberg state with n = 50 is about
100 µs [9], too short to allow a many-body system to reach
equilibrium. Because the full Rydberg-Rydberg interactions
are so strong, we can use a state with only a fraction of
those interactions, something we can achieve by creating a
wave function that is mostly ground state with a small,
adjustable Rydberg component, using a coherent coupling,
dressing the atom [10]. This would be accomplished with
continuous laser irradiation of ground-state atoms, coherently
coupling the ground state to the Rydberg state via a one- or
two-photon transition. We can imagine creating atoms that
have only 1% Rydberg character, which is still sufficient to
create interesting dipolar physics and increases the lifetimes
to ∼10 ms, where it may be possible for the system to
come to equilibrium. The admixture fraction is controllable
by adjusting the coupling laser detuning and intensity and thus
would also give a tunable dipolar coupling between atoms,
which could be a useful feature in exploring the effects of long-
range interactions. Additionally, the dipole-dipole interaction
could be dependent on an externally applied static electric
field, either through tuning near a Förster resonance [11] or by
inducing a dipole moment via the Stark effect [12].

In what follows, we will assume an idealized Rydberg
coupling laser, described solely by a Rabi frequency ! and a
detuning δ with respect to the one-atom Rydberg transition. In
practice, this would be created through a two-photon excitation
with a large intermediate state detuning to assure coherent
coupling. In [13], the authors demonstrate coherent coupling
between a ground and Rydberg level in Rb with a two-
photon Rabi frequency of ∼100 kHz and an intermediate state
detuning of ∼500 MHz. Our goal is to create Rydberg-dressed
atoms with a wave function

|ψ⟩ = α|g⟩ + β|r⟩, (1)

where |g⟩ is the ground state and |r⟩ is the Rydberg state. Such
a state would have a spontaneous decay rate of

γ ∼ |⟨g|d⃗|ψ⟩|2 ∼ β2γr , (2)

where γr is the Rydberg decay rate and d⃗ is the dipole operator
for spontaneous emission from the Rydberg state [12]. It is
tempting to then simply calculate the dipole-dipole interaction
between the two dressed states as

ϵint = ⟨ψ |Udd |ψ⟩ = β2⟨r|Udd |r⟩ = β2ϵr , (3)

where Udd is the usual dipole-dipole operator between
Rydberg states and ϵr is the full interaction energy between
two Rydbergs, which can be of order 10 GHz for R = 1 µm
and n ∼ 50. As we will see later, this expression is in
general invalid because the atom-atom interactions will cause a
blockade effect [14–16] such that the two-atom wave function
contains much less than β2 of the |r⟩|r⟩ state. The correct
procedure is to calculate the dressed states for two atoms
simultaneously. The blockade effect will arise naturally out
of the dressed eigenstates of this two-atom system.

II. TWO INTERACTING DRESSED ATOMS

The simplest case of interacting dressed atoms to consider is
the two-atom case. We could write a 4 × 4 Hamiltonian matrix
in the basis |gg⟩,|gr⟩,|rg⟩,|rr⟩, but if instead we use a basis
with 1/

√
2(|gr⟩ ± |rg⟩), the antisymmetric state is uncoupled
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FIG. 1. The energy levels of the two-atom state for !/2π =
10 MHz, δ/2π = 100 MHz and (a) c3/2π = −1000 MHz µm3 and
(b) c3/2π = 1000 MHz µm3.

and can be ignored. The resulting 3 × 3 Hamiltonian in the
basis |gg⟩,1/

√
2(|gr⟩ + |rg⟩),|rr⟩ can be written as

H = h̄

⎛

⎜⎝

0 !√
2

0
!√

2
δ !√

2

0 !√
2

2δ + Udd

⎞

⎟⎠ . (4)

If Udd = 0, we recover the dressed states and eigenenergies
for two independent dressed atoms, as expected. After diag-
onalizing the matrix, we find the energy levels as shown in
Fig. 1, where we have used a simple c3/R

3 for the dipole-dipole
interaction energy, with c3/2π = ±1 GHz µm3, typical for a
dipole-dipole interaction for n ∼ 40–50, assuming an applied
static electric field, for example. We subtract the constant
light shift because of the coupling laser so that we plot the
interaction energy solely because of the two-atom effects (we
also ignore the angular dependence of the dipole interaction,
effectively assuming a fixed interatomic axis). Figure 1 shows
two cases, for positive and negative c3. In the case of negative
c3, there is an avoided curve crossing when the laser is
two-photon resonant with the dipole-shifted |rr⟩ state, that
is, 2δ = −c3/R

3. We consider both the positive and negative
c3 cases with the detuning chosen so that the interaction
energy at short range is positive. Because the trapping potential
confines the atomic gas, an attractive interaction would lead to
collapse of the cloud rather than emergent order [17]. Figure 2
shows a detail of the interaction energies. Note that inside this
avoided crossing, the eigenenergy of the state that connects to
the ground state (the state of interest in the context of a Rydberg
dressed atom) is almost independent of R, whereas outside the
crossing, it falls off rapidly with R. For positive c3 [Figs. 1(b)
and 2(b)], there is no avoided crossing, yet the eigenenergy also
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FIG. 2. A detail of the interaction energies for the cases shown
in Fig. 1. (b) The convergence with an interaction ∼1/r3 at longer
distances.

becomes independent of R at distances less than about 0.5 µm,
which is comparable to small optical lattice spacings. This
R independence is a consequence of the blockade phe-
nomenon. The large Udd term in the Hamiltonian makes the
coupling from the single-atom excited state to the doubly
excited state off-resonant, significantly reducing the |rr⟩
component of the two-atom wave function (to much less
than β2).

III. TWO-ATOM EIGENSTATES

We can find the eigenstates of this matrix as a function
of R. Examination of these eigenvectors shows that for the
eigenvector associated with the lowest energy eigenvalue,
the system is predominantly in the ground state, with small
amounts of the two excited states mixed in. Using these state
populations, we can calculate the percentage of Rydberg in the
admixed state from the expression

2|⟨rr|ψ⟩|2 + 1
2 |⟨gr|ψ⟩ + ⟨rg|ψ⟩|2, (5)

which shows that for the values used previously, the state is
0.5% in the Rydberg state, which yields a lifetime of about
25 ms. Inside the blockade radius, the system cannot be in
the state where both atoms are excited to the Rydberg level
because of blockade, so the Rydberg characteristic inside the
blockade radius comes from the eigenstate where only one of
the atoms is excited to the Rydberg level.

In the limit when Udd ≫ δ, at small R, we can expand the
ground-state energy of this matrix near R = 0. The ground-
state energy inside the blockade radius becomes Egg/h̄ ≈
(1/2)(δ −

√
2!2 + δ2). Taking the difference between this

energy and the noninteracting ground-state energy gives an
energy due to interactions of Eint/h̄ ∼ (1/8)(!4/δ3), for δ ≫
!. For experiments with cold atoms, interaction energies need
to be of the order of kilohertz, of the same order as ground-state
atom-atom interactions for atoms trapped in a single lattice site
(such as is relevant for the Bose-Hubbard Hamiltonian). From
this expression, we can see that it is possible to achieve such
magnitude of interaction energy with Rabi frequencies of order
10 MHz and detunings of order 100 MHz, while at the same
time keeping the Rydberg fraction to 1% or less (necessary
for sufficiently small spontaneous emission rates). The !4

dependence of the interaction energy puts a premium on large
Rabi frequencies, which will be the primary experimental
challenge, especially if it needs to be implemented over a
large spatial volume.

A second limiting case we can consider is when the atoms
are separated by a distance much greater than the blockade
radius, or 2δ ≫ Udd . We find that the ground-state energy
eigenvalue dependent on R scales as Udd (1/16)!4/δ4. This is
as expected: If we can ignore blockade, the admixture ratio
of the excited state for a single atom goes as β ∼ (1/2)!/δ,
so the doubly excited state mixture would go as β2, and the
matrix element ⟨rr|Vdd |rr⟩ scales with β4, as found. Note that
once again, the interaction energy scales as !4.

The preceding discussions are independent of the actual
nature of the atom-atom interaction. Although presented in
terms of a pure dipole-dipole interaction, ∼c3/R

3, the same
blockade mechanism applies for any interaction larger than
the detuning. Figure 3 plots the energy of the dressed state
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We discuss techniques to generate long-range interactions in a gas of ground state alkali atoms, by

weakly admixing excited Rydberg states with laser light. This provides a tool to engineer strongly

correlated phases with reduced decoherence from inelastic collisions and spontaneous emission. As an

illustration, we discuss the quantum phases of dressed atoms with dipole-dipole interactions confined in a

harmonic potential, as relevant to experiments. We show that residual spontaneous emission from the

Rydberg state acts as a heating mechanism, leading to a quantum-classical crossover.
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There is currently significant interest in the physics of
dipolar quantum degenerate gases [1]. Strong long-range
dipole-dipole interactions promise the realization of novel
many-body phases in neutral gases, such as self-assembled
crystals [2], topological superfluids and quantum phases
with hidden topological order [3]. The regime of strong
dipolar couplings is easily accessible with interacting elec-
tric dipole moments, as realized, in particular, in quantum
gases with polar molecules prepared in their rovibrational
ground state [4]. In contrast, quantum gases of ground state
atoms typically interact via the much smaller magnetic
interactions [5]. The question, therefore, is to what extent
this regime of strong dipolar interactions can also be
realized with present atomic gases experiments with alkali
atoms. Here we propose and investigate a setup where the
huge electric dipole moments d" n2 [6–8] of atomic
Rydberg states with principal quantum number n are
weakly admixed to the atomic ground state, thus providing
an atomic gas of interacting effective electric dipoles com-
parable to the case of polar molecules. A central question,
and the main difference to the molecular case, is decoher-
ence and heating mechanisms associated with spontaneous
emission from Rydberg states, and possible inelastic colli-
sions. Below we show that (i) dipolar crystals can be
realized with Rydberg-dressed atoms confined to two di-
mensions, with negligible collisional losses, and
(ii) spontaneous emission !r provides an intrinsic heating
mechanism, allowing the study of thermalization phe-
nomena with full tunability of system parameters. We
study the associated crystal melting with molecular dy-
namics calculations.

The setup we have in mind is illustrated in Fig. 1: we
propose to weakly couple with laser light the ground state
jgi of each atom to a Stark-split Rydberg state jri with
large dipole moment d0 in the kilodebye range. For large
enough detuning ! from resonance and interparticle dis-
tances, interactions are of the dipole-dipole type V3D

int /
ð"=!Þ4d20=r3, with" the Rabi frequency. By confining the

particles to a 2D plane using an optical field, the effective
in-plane interactions V2D

int are then purely repulsive, with
negligible collisional losses. This opens the way to the
study of the many-body phases of 2D dipoles in these
systems. As an illustration, we show the existence of
mesoscopic supersolids and crystals with Rydberg-dressed
bosonic atoms under realistic conditions of in-plane har-
monic confinement, using exact quantum Monte Carlo
simulations. Residual spontaneous emission !eff "
ð"=!Þ2!r from the Rydberg state introduces an intrinsic
heating mechanism, driving the quantum phases into the
classical regime. We study the quantum-classical crossover
by means of molecular dynamics simulations, and show
the emergence of a dynamical thermalization time scale in
these systems.

FIG. 1 (color online). (a) Sketch of the energy levels constitut-
ing the Stark fan of an alkali metal atom exposed to an electric
field. jgi and jri are coupled by a laser with Rabi frequency "
and (blue) detuning !. !r is the spontaneous emission from jri,
with momentum @kR of the photon recoil. (b) Born-
Oppenheimer potentials in the x-y-plane in the dressed picture.
R0 is the resonant Condon point. The effective interaction
potenti.al V3D

int ðrÞ is the higher-energy curve (thick line). Level
crossings occur for Rn < R0. Inset: blowup of V

3D
int ðrÞ (solid line)

compared to 1=r3 (dashed line).
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Spin squeezing of atoms by the dipole interaction in virtually excited Rydberg states
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We show that the interaction between Rydberg atomic states can provide continuous spin squeezing of atoms
with two ground states. The interaction prevents the simultaneous excitation of more than a single atom in the
sample to the Rydberg state, and we propose to utilize this blockade effect to realize an effective collective spin
Hamiltonian Jx

2!Jy
2 . With this Hamiltonian the quantum-mechanical uncertainty of the spin variable Jx!Jy

can be significantly reduced.

DOI: 10.1103/PhysRevA.65.041803 PACS number!s": 42.50.!p, 32.80.!t

The sizable dipole interaction between atoms that have
been transferred with pulsed laser fields to highly excited
Rydberg states has been proposed #1,2$ as a mechanism for
entanglement operation on the state of neutral atoms. A
‘‘Rydberg blockade’’ effect realized by the dipole interaction
prevents more than one atom to enter a Rydberg state at a
time. Hence, the evolution of one atom can be conditioned
on the state of another one as required for a two-qubit gate in
a quantum computer #1$. The Rydberg blockade effect can be
used in a multistep procedure to prepare any collective sym-
metric state of an entire atomic ensemble #2$.
In this paper, we propose to use the Rydberg blockade

effect in an easier way that uses only continuous laser fields
to realize the particular collective states called spin squeezed
states. Spin squeezing refers to the collective spin J!"% iS! i of
a collection of spin 1/2 particles, for which the Heisenberg
inequality assures &Jx&Jy'!(Jz)!/2, (*"1). A state whose
mean spin is along z and in which the width of the distribu-
tion of Jx is reduced so that &Jx#!!(Jz)!/2 is called spin
squeezed. The spin notation represents the state of an en-
semble of two-level atoms, where the two states are repre-
sented as the Sz"$1/2 eigenstates of a spin 1/2 particle.
Spin squeezing is a useful property since reduced spin fluc-
tuations imply an improvement of the counting statistics for
the number of atoms in specific states, i.e., improved resolu-
tion in spectroscopy and in atomic clocks #3,4$.
Recently, a number of proposals for spin squeezing and

atomic noise reduction has been made involving absorption
of broadband squeezed light #5,6$, collisional interactions in
two-component condensates #7,8$, and quantum nondemoli-
tion detection of atomic populations #9–11$. In the work pre-
sented here, an atomic gas is illuminated with lasers that
couple long-lived states !a) and !b) to a Rydberg state !r) .
The lasers are far detuned so that the population in the Ryd-
berg state is small and their effect is described by an effec-
tive Hamiltonian H acting on the states !a) and !b). We first
show how nonlinearities appear in the simple case of the
lightshift produced by a single laser. The Hamiltonian Jz

2 is
realized and squeezing will occur. This Hamiltonian, how-
ever, has the drawback that the squeezing axis depends on
the interaction time and on the total number of atoms. Thus,
we propose a way to realize the Hamiltonian Jx

2!Jy
2 that

enables stronger squeezing and which also presents the ad-
vantage that the squeezing axis is stationary #12$.

Let us consider the situation depicted in Fig. 1, where an
ensemble of N atoms is illuminated by a laser field detuned
by & from resonance of the transition !a)→!r). If the inter-
nal state of the atoms is initially symmetric with respect to
exchange of atoms, we can consider only the symetric states
and a basis is formed by the states !na ,nr), where na is the
number of atoms in the state !a), nr is the number of atoms
in the state !r), and the remanining N!na!nr atoms popu-
late the state !b) . The state !na,0) is coupled with the ampli-
tude !na+ to !na!1,1) which, in turn, is coupled to the
state !na!2,2) with the amplitude !2!na!1+ . If the laser
is sufficiently weak, the population in the state with nr%0 is
very small, and the only effect of the laser is to shift the
energy of the states !na,0). The expression for the light shift
to fourth order in the laser field amplitude is

&Ena
"!na

+2

&
&na

2 +4

&3 !
1
2&

2na!na!1 "+4

&2 , !1"

where the last term is due to a two photon transition to the
state !na!2,2). The terms proportional to na

2 in &Ena
cancel

and the light shift is proportional to na as expected for non-

FIG. 1. Laser configuration and relevant states for calculation of
the light shift to fourth order in the presence of a single laser. !a" the
energy levels of a single atom. !b" the energy levels of a collection
of atoms: the upper part of the figure shows how interaction causes
an upward or downward shift Uint of the state with two Rydberg
excited atoms.

RAPID COMMUNICATIONS

PHYSICAL REVIEW A, VOLUME 65, 041803!R"

1050-2947/2002/65!4"/041803!4"/$20.00 ©2002 The American Physical Society65 041803-1

PHYSICAL REVIEW A 82, 033412 (2010)

Interactions between Rydberg-dressed atoms
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We examine interactions between atoms continuously and coherently driven between the ground state and a
Rydberg state, producing “Rydberg-dressed atoms.” Because of the large dipolar coupling between two Rydberg
atoms, a small admixture of Rydberg character into a ground state can produce an atom with a dipole moment
of a few debye, the appropriate size to observe interesting dipolar physics effects in cold atom systems. We have
calculated the interaction energies for atoms that interact via the dipole-dipole interaction and find that because
of blockade effects, the R dependent two-atom interaction terms are limited in size and can be R independent
up until the dipolar energy is equal to the detuning. This produces R dependent interactions different from the
expected 1/R3 dipolar form that have no direct analogy in condensed-matter physics and could lead to interesting
quantum phases in trapped Rydberg systems.

DOI: 10.1103/PhysRevA.82.033412 PACS number(s): 32.80.Rm, 05.30.Rt, 31.30.jh

I. INTRODUCTION

There have been numerous theoretical predictions of
interesting phases of matter in ultracold atomic systems
with long-range interactions, including dipolar crystals [1–4],
supersolids [4–6], striped and checkerboard phases [5–7],
and others [8]. These calculations have generally assumed
the existence of ground-state polar molecules with dipole
moments in the range (2–5)ea0. Although there have been
dramatic accomplishments recently in the production of
ground-state polar molecules [6], they have yet to be used
for such dipolar many-body physics and are challenging to
produce. As has been pointed out by [1], Rydberg atoms
might also be able to fill this role. The maximum dipole-
dipole interaction between two Rydberg atoms with principle
quantum number n is of order n4ea0, orders of magnitude
larger than needed for predicted dipolar effects and in fact so
large that the interparticle forces would overwhelm any optical
trapping forces from an optical lattice, for example. In addition,
the typical lifetime of a Rydberg state with n = 50 is about
100 µs [9], too short to allow a many-body system to reach
equilibrium. Because the full Rydberg-Rydberg interactions
are so strong, we can use a state with only a fraction of
those interactions, something we can achieve by creating a
wave function that is mostly ground state with a small,
adjustable Rydberg component, using a coherent coupling,
dressing the atom [10]. This would be accomplished with
continuous laser irradiation of ground-state atoms, coherently
coupling the ground state to the Rydberg state via a one- or
two-photon transition. We can imagine creating atoms that
have only 1% Rydberg character, which is still sufficient to
create interesting dipolar physics and increases the lifetimes
to ∼10 ms, where it may be possible for the system to
come to equilibrium. The admixture fraction is controllable
by adjusting the coupling laser detuning and intensity and thus
would also give a tunable dipolar coupling between atoms,
which could be a useful feature in exploring the effects of long-
range interactions. Additionally, the dipole-dipole interaction
could be dependent on an externally applied static electric
field, either through tuning near a Förster resonance [11] or by
inducing a dipole moment via the Stark effect [12].

In what follows, we will assume an idealized Rydberg
coupling laser, described solely by a Rabi frequency ! and a
detuning δ with respect to the one-atom Rydberg transition. In
practice, this would be created through a two-photon excitation
with a large intermediate state detuning to assure coherent
coupling. In [13], the authors demonstrate coherent coupling
between a ground and Rydberg level in Rb with a two-
photon Rabi frequency of ∼100 kHz and an intermediate state
detuning of ∼500 MHz. Our goal is to create Rydberg-dressed
atoms with a wave function

|ψ⟩ = α|g⟩ + β|r⟩, (1)

where |g⟩ is the ground state and |r⟩ is the Rydberg state. Such
a state would have a spontaneous decay rate of

γ ∼ |⟨g|d⃗|ψ⟩|2 ∼ β2γr , (2)

where γr is the Rydberg decay rate and d⃗ is the dipole operator
for spontaneous emission from the Rydberg state [12]. It is
tempting to then simply calculate the dipole-dipole interaction
between the two dressed states as

ϵint = ⟨ψ |Udd |ψ⟩ = β2⟨r|Udd |r⟩ = β2ϵr , (3)

where Udd is the usual dipole-dipole operator between
Rydberg states and ϵr is the full interaction energy between
two Rydbergs, which can be of order 10 GHz for R = 1 µm
and n ∼ 50. As we will see later, this expression is in
general invalid because the atom-atom interactions will cause a
blockade effect [14–16] such that the two-atom wave function
contains much less than β2 of the |r⟩|r⟩ state. The correct
procedure is to calculate the dressed states for two atoms
simultaneously. The blockade effect will arise naturally out
of the dressed eigenstates of this two-atom system.

II. TWO INTERACTING DRESSED ATOMS

The simplest case of interacting dressed atoms to consider is
the two-atom case. We could write a 4 × 4 Hamiltonian matrix
in the basis |gg⟩,|gr⟩,|rg⟩,|rr⟩, but if instead we use a basis
with 1/

√
2(|gr⟩ ± |rg⟩), the antisymmetric state is uncoupled
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FIG. 1. The energy levels of the two-atom state for !/2π =
10 MHz, δ/2π = 100 MHz and (a) c3/2π = −1000 MHz µm3 and
(b) c3/2π = 1000 MHz µm3.

and can be ignored. The resulting 3 × 3 Hamiltonian in the
basis |gg⟩,1/

√
2(|gr⟩ + |rg⟩),|rr⟩ can be written as

H = h̄

⎛

⎜⎝

0 !√
2

0
!√

2
δ !√

2

0 !√
2

2δ + Udd

⎞

⎟⎠ . (4)

If Udd = 0, we recover the dressed states and eigenenergies
for two independent dressed atoms, as expected. After diag-
onalizing the matrix, we find the energy levels as shown in
Fig. 1, where we have used a simple c3/R

3 for the dipole-dipole
interaction energy, with c3/2π = ±1 GHz µm3, typical for a
dipole-dipole interaction for n ∼ 40–50, assuming an applied
static electric field, for example. We subtract the constant
light shift because of the coupling laser so that we plot the
interaction energy solely because of the two-atom effects (we
also ignore the angular dependence of the dipole interaction,
effectively assuming a fixed interatomic axis). Figure 1 shows
two cases, for positive and negative c3. In the case of negative
c3, there is an avoided curve crossing when the laser is
two-photon resonant with the dipole-shifted |rr⟩ state, that
is, 2δ = −c3/R

3. We consider both the positive and negative
c3 cases with the detuning chosen so that the interaction
energy at short range is positive. Because the trapping potential
confines the atomic gas, an attractive interaction would lead to
collapse of the cloud rather than emergent order [17]. Figure 2
shows a detail of the interaction energies. Note that inside this
avoided crossing, the eigenenergy of the state that connects to
the ground state (the state of interest in the context of a Rydberg
dressed atom) is almost independent of R, whereas outside the
crossing, it falls off rapidly with R. For positive c3 [Figs. 1(b)
and 2(b)], there is no avoided crossing, yet the eigenenergy also
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FIG. 2. A detail of the interaction energies for the cases shown
in Fig. 1. (b) The convergence with an interaction ∼1/r3 at longer
distances.

becomes independent of R at distances less than about 0.5 µm,
which is comparable to small optical lattice spacings. This
R independence is a consequence of the blockade phe-
nomenon. The large Udd term in the Hamiltonian makes the
coupling from the single-atom excited state to the doubly
excited state off-resonant, significantly reducing the |rr⟩
component of the two-atom wave function (to much less
than β2).

III. TWO-ATOM EIGENSTATES

We can find the eigenstates of this matrix as a function
of R. Examination of these eigenvectors shows that for the
eigenvector associated with the lowest energy eigenvalue,
the system is predominantly in the ground state, with small
amounts of the two excited states mixed in. Using these state
populations, we can calculate the percentage of Rydberg in the
admixed state from the expression

2|⟨rr|ψ⟩|2 + 1
2 |⟨gr|ψ⟩ + ⟨rg|ψ⟩|2, (5)

which shows that for the values used previously, the state is
0.5% in the Rydberg state, which yields a lifetime of about
25 ms. Inside the blockade radius, the system cannot be in
the state where both atoms are excited to the Rydberg level
because of blockade, so the Rydberg characteristic inside the
blockade radius comes from the eigenstate where only one of
the atoms is excited to the Rydberg level.

In the limit when Udd ≫ δ, at small R, we can expand the
ground-state energy of this matrix near R = 0. The ground-
state energy inside the blockade radius becomes Egg/h̄ ≈
(1/2)(δ −

√
2!2 + δ2). Taking the difference between this

energy and the noninteracting ground-state energy gives an
energy due to interactions of Eint/h̄ ∼ (1/8)(!4/δ3), for δ ≫
!. For experiments with cold atoms, interaction energies need
to be of the order of kilohertz, of the same order as ground-state
atom-atom interactions for atoms trapped in a single lattice site
(such as is relevant for the Bose-Hubbard Hamiltonian). From
this expression, we can see that it is possible to achieve such
magnitude of interaction energy with Rabi frequencies of order
10 MHz and detunings of order 100 MHz, while at the same
time keeping the Rydberg fraction to 1% or less (necessary
for sufficiently small spontaneous emission rates). The !4

dependence of the interaction energy puts a premium on large
Rabi frequencies, which will be the primary experimental
challenge, especially if it needs to be implemented over a
large spatial volume.

A second limiting case we can consider is when the atoms
are separated by a distance much greater than the blockade
radius, or 2δ ≫ Udd . We find that the ground-state energy
eigenvalue dependent on R scales as Udd (1/16)!4/δ4. This is
as expected: If we can ignore blockade, the admixture ratio
of the excited state for a single atom goes as β ∼ (1/2)!/δ,
so the doubly excited state mixture would go as β2, and the
matrix element ⟨rr|Vdd |rr⟩ scales with β4, as found. Note that
once again, the interaction energy scales as !4.

The preceding discussions are independent of the actual
nature of the atom-atom interaction. Although presented in
terms of a pure dipole-dipole interaction, ∼c3/R

3, the same
blockade mechanism applies for any interaction larger than
the detuning. Figure 3 plots the energy of the dressed state
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Figure 1 | Experiment sequence. To achieve both a strong ground-state
atom–atom interaction and high-fidelity signal detection we perform the
following steps at di�erent interatomic spacings. In the experimental
procedure, two Cs atoms are initially 6.6 µm apart, and held by optical
tweezers. After qubit-state preparation, the two trapped atoms translate
towards each other with an average speed of 9 mm s�1 (18 nm step every
2 µs) by ramping the modulation frequencies of the AOM. At the target
distance, the Rydberg-dressing laser at 319 nm turns on to illuminate the
two atoms simultaneously with a Raman laser. The tweezers are
extinguished during this step to eliminate optical perturbation. The two
atoms then translate back to the original positions for state detection.

of the dressed state, the light shift on the Rydberg-dressed state
is insensitive to thermal motion that gives rises to a fluctuation
in the di�erence in the optical phase seen at the relative positions
between the two atoms. Such thermal noise was a limiting factor in
the generation of spin entanglement in previouswork10. The thermal
atomic motion in the Rydberg-dressed interactions, however, does
lead to a Doppler shift, and thus noise in the optical detuning �L.

The key mechanism that determines the interaction strength, J ,
depends on the EDDI and the optical Rabi frequency ⌦L. Thus,
the distance between the two Rydberg-dressed atoms and the
choice of the principal quantum number are crucial experimental

parameters. Ideally, we would like the atoms to be located far apart
for individual addressing, and conversely, in close proximity to
maximize J . Our particular implementation of an acousto-optic
modulator (AOM) allows us to create two optical tweezers that
trap each atom from the same laser by simultaneously driving
the AOM at two frequencies (see Supplementary Methods). We
achieve this goal by independently sweeping the values of these
frequencies and dynamically translating the traps. The capability
of producing su�ciently strong J at shorter interatomic distance
allows us to reduce the principal quantum number of the Rydberg
level. Thus, the sensitivity to external fields, which rapidly increases
for high-lying Rydberg levels and is a common challenge in these
experiments, is reduced.

Results
We directly measure J as a function of the interatomic distance.
Our experiment is illustrated in Fig. 1. The two trapped 133Cs
atoms are initially prepared in state |1, 1i and we dynamically
translate them to be in close proximity at a targeted distance R.
We then extinguish the tweezers for a short time to eliminate
light shifts from the dipole-trap laser, and immediately apply a
short pulse of the Raman and Rydberg-dressing lasers concur-
rently. Afterwards, the optical tweezers are restored to recapture
the falling atoms and translate them back to the original positions
for independent state detection, which is accomplished by using
the |6S1/2,F =4i! |6P3/2,F 0 =5iD2 cycling transition to determine
whether each atom is in state |0i (bright to this excitation) or |1i
(dark to this excitation).We use a 319-nm laser for dressing the 133Cs
atom, which couples atoms directly from the ground state to the
Rydberg level, 6S1/2,F =4!64P3/2, in a single-photon transition23.
This avoids unwanted population in an intermediate, short-lived
excited state that arises in the typical two-photon Rydberg excita-
tion method, which causes additional ground-state decoherence30.
We choose a detuning that is small compared with the ground-
state hyperfine splitting so that the dressing of |1, 1i in the F = 3
manifold is negligible, but all other ground states in the logical
basis, {|0, 0i, |0, 1i, |1, 0i}, are now well described in the dressed
basis. To drive spin flips, we apply the Raman laser fields to the
two Rydberg-dressed atoms when they are at a desired separation.
By sweeping the Raman (microwave) frequency and measuring the
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133Cs atoms reveals the ground-state spin-flip blockade. The excitation from |1, 1i! |0,0i occurs through an anti-blockade two-photon transition. J/h is
simply twice the shift of the resonance frequency for excitation to the state |0,0i. c, Experimental data of J versus R with two sets of parameters. The
dashed curves are the calculated values based on a detailed model with no free parameters (see Supplementary Methods). The error bars shown in b and c
correspond to one standard deviation.
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Figure 1 | Experiment sequence. To achieve both a strong ground-state
atom–atom interaction and high-fidelity signal detection we perform the
following steps at di�erent interatomic spacings. In the experimental
procedure, two Cs atoms are initially 6.6 µm apart, and held by optical
tweezers. After qubit-state preparation, the two trapped atoms translate
towards each other with an average speed of 9 mm s�1 (18 nm step every
2 µs) by ramping the modulation frequencies of the AOM. At the target
distance, the Rydberg-dressing laser at 319 nm turns on to illuminate the
two atoms simultaneously with a Raman laser. The tweezers are
extinguished during this step to eliminate optical perturbation. The two
atoms then translate back to the original positions for state detection.

of the dressed state, the light shift on the Rydberg-dressed state
is insensitive to thermal motion that gives rises to a fluctuation
in the di�erence in the optical phase seen at the relative positions
between the two atoms. Such thermal noise was a limiting factor in
the generation of spin entanglement in previouswork10. The thermal
atomic motion in the Rydberg-dressed interactions, however, does
lead to a Doppler shift, and thus noise in the optical detuning �L.

The key mechanism that determines the interaction strength, J ,
depends on the EDDI and the optical Rabi frequency ⌦L. Thus,
the distance between the two Rydberg-dressed atoms and the
choice of the principal quantum number are crucial experimental

parameters. Ideally, we would like the atoms to be located far apart
for individual addressing, and conversely, in close proximity to
maximize J . Our particular implementation of an acousto-optic
modulator (AOM) allows us to create two optical tweezers that
trap each atom from the same laser by simultaneously driving
the AOM at two frequencies (see Supplementary Methods). We
achieve this goal by independently sweeping the values of these
frequencies and dynamically translating the traps. The capability
of producing su�ciently strong J at shorter interatomic distance
allows us to reduce the principal quantum number of the Rydberg
level. Thus, the sensitivity to external fields, which rapidly increases
for high-lying Rydberg levels and is a common challenge in these
experiments, is reduced.

Results
We directly measure J as a function of the interatomic distance.
Our experiment is illustrated in Fig. 1. The two trapped 133Cs
atoms are initially prepared in state |1, 1i and we dynamically
translate them to be in close proximity at a targeted distance R.
We then extinguish the tweezers for a short time to eliminate
light shifts from the dipole-trap laser, and immediately apply a
short pulse of the Raman and Rydberg-dressing lasers concur-
rently. Afterwards, the optical tweezers are restored to recapture
the falling atoms and translate them back to the original positions
for independent state detection, which is accomplished by using
the |6S1/2,F =4i! |6P3/2,F 0 =5iD2 cycling transition to determine
whether each atom is in state |0i (bright to this excitation) or |1i
(dark to this excitation).We use a 319-nm laser for dressing the 133Cs
atom, which couples atoms directly from the ground state to the
Rydberg level, 6S1/2,F =4!64P3/2, in a single-photon transition23.
This avoids unwanted population in an intermediate, short-lived
excited state that arises in the typical two-photon Rydberg excita-
tion method, which causes additional ground-state decoherence30.
We choose a detuning that is small compared with the ground-
state hyperfine splitting so that the dressing of |1, 1i in the F = 3
manifold is negligible, but all other ground states in the logical
basis, {|0, 0i, |0, 1i, |1, 0i}, are now well described in the dressed
basis. To drive spin flips, we apply the Raman laser fields to the
two Rydberg-dressed atoms when they are at a desired separation.
By sweeping the Raman (microwave) frequency and measuring the
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Figure 1 | Experiment sequence. To achieve both a strong ground-state
atom–atom interaction and high-fidelity signal detection we perform the
following steps at di�erent interatomic spacings. In the experimental
procedure, two Cs atoms are initially 6.6 µm apart, and held by optical
tweezers. After qubit-state preparation, the two trapped atoms translate
towards each other with an average speed of 9 mm s�1 (18 nm step every
2 µs) by ramping the modulation frequencies of the AOM. At the target
distance, the Rydberg-dressing laser at 319 nm turns on to illuminate the
two atoms simultaneously with a Raman laser. The tweezers are
extinguished during this step to eliminate optical perturbation. The two
atoms then translate back to the original positions for state detection.

of the dressed state, the light shift on the Rydberg-dressed state
is insensitive to thermal motion that gives rises to a fluctuation
in the di�erence in the optical phase seen at the relative positions
between the two atoms. Such thermal noise was a limiting factor in
the generation of spin entanglement in previouswork10. The thermal
atomic motion in the Rydberg-dressed interactions, however, does
lead to a Doppler shift, and thus noise in the optical detuning �L.

The key mechanism that determines the interaction strength, J ,
depends on the EDDI and the optical Rabi frequency ⌦L. Thus,
the distance between the two Rydberg-dressed atoms and the
choice of the principal quantum number are crucial experimental

parameters. Ideally, we would like the atoms to be located far apart
for individual addressing, and conversely, in close proximity to
maximize J . Our particular implementation of an acousto-optic
modulator (AOM) allows us to create two optical tweezers that
trap each atom from the same laser by simultaneously driving
the AOM at two frequencies (see Supplementary Methods). We
achieve this goal by independently sweeping the values of these
frequencies and dynamically translating the traps. The capability
of producing su�ciently strong J at shorter interatomic distance
allows us to reduce the principal quantum number of the Rydberg
level. Thus, the sensitivity to external fields, which rapidly increases
for high-lying Rydberg levels and is a common challenge in these
experiments, is reduced.

Results
We directly measure J as a function of the interatomic distance.
Our experiment is illustrated in Fig. 1. The two trapped 133Cs
atoms are initially prepared in state |1, 1i and we dynamically
translate them to be in close proximity at a targeted distance R.
We then extinguish the tweezers for a short time to eliminate
light shifts from the dipole-trap laser, and immediately apply a
short pulse of the Raman and Rydberg-dressing lasers concur-
rently. Afterwards, the optical tweezers are restored to recapture
the falling atoms and translate them back to the original positions
for independent state detection, which is accomplished by using
the |6S1/2,F =4i! |6P3/2,F 0 =5iD2 cycling transition to determine
whether each atom is in state |0i (bright to this excitation) or |1i
(dark to this excitation).We use a 319-nm laser for dressing the 133Cs
atom, which couples atoms directly from the ground state to the
Rydberg level, 6S1/2,F =4!64P3/2, in a single-photon transition23.
This avoids unwanted population in an intermediate, short-lived
excited state that arises in the typical two-photon Rydberg excita-
tion method, which causes additional ground-state decoherence30.
We choose a detuning that is small compared with the ground-
state hyperfine splitting so that the dressing of |1, 1i in the F = 3
manifold is negligible, but all other ground states in the logical
basis, {|0, 0i, |0, 1i, |1, 0i}, are now well described in the dressed
basis. To drive spin flips, we apply the Raman laser fields to the
two Rydberg-dressed atoms when they are at a desired separation.
By sweeping the Raman (microwave) frequency and measuring the
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Figure 3 | Generating entanglement directly. Top panel: Rabi oscillations of
a single Rydberg-dressed Cs qubit. Lower three panels: two-atom data with
Rydberg-dressed spin-flip blockade (J/h⇡750 kHz with⌦L/2⇡=4.3 MHz,
�L/2⇡= 1.1 MHz, R=2.9µm). The data points are fitted with curves of
damped oscillation and exponentially varied o�set. Rabi oscillation occurs
between two spin-down atoms and a two-qubit entangled state. There is ap

2 enhancement of the microwave Rabi rate,⌦mw, arising from the
blockade, and excitation to state |0,0i is strongly suppressed owing to the
transition blockade as shown in Fig. 2a. The maximum Bell state | +i
entanglement is thus generated at around 2 µs. The error bars for all data
points correspond to one standard deviation.

resulting spin flips, we obtain a two-qubit energy spectrum of the
form shown in Fig. 2b. To determine J , we measure the microwave
resonance frequency for the transition |1, 1i! (|1, 0i+|0, 1i)/

p
2

and for the two-microwave-photon transition |1, 1i! |0, 0i. J/h̄ is
given by twice the frequency di�erence of these two resonances.
The microwave Rabi rate⌦mw and the pulse time of the stimulated
Raman laser are properly chosen to ensure the observation of both
the two-photon and the single-photon microwave resonance. The
relative populations P1,1, P1,0, P0,1 and P0,0 of the four two-qubit com-
putational basis states can be directly measured with the coincident
bright and dark signals determined by the photon counting of the
two avalanche photodiodes. Figure 2c plots the measured J as a
function of interatomic distance for two di�erent combinations of
the 319-nm laser detuning�L and the optical Rabi rate⌦L.

Although the simple two-level atom model gives a clean
theoretical prediction for J as described above, the true atomic
physics is more complex. The EDDI shifts 64P3/2 negatively (red);
thus, for Rydberg dressing we tune the 319-nm laser to the blue. At
short interatomic spacings, however, the two-atom Rydberg energy
levels strongly mix to yield a spectrum with molecular quality32.
The resulting ‘spaghetti’ of molecular levels could potentially lead
to additional unwanted resonances that would ruin the Rydberg
blockade. This may also a�ect the lifetime of the two-atom dressed
state. The existence of such resonances, however, depends on
the oscillator strengths. With our experimental resolution, we are
unable to detect such resonances in our experiment. We use a best-
fit of the blockade shift curve of |r , ri from our detailed model30
to calculate J as shown in Fig. 2c (see Supplementary Methods and
Supplementary Fig. 3). With an ideal Rydberg blockade, Udd !1,
we find the expected plateau in J at short interatomic distances
predicted from the two-level model. The plateau at small R is
characteristic of a perfect Rydberg blockade, and agrees with simple
theoretical predictions.
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Figure 4 | Entanglement verification. A global ⇡/2 pulse is applied to the
undressed system after the entangled state is prepared. The data are
obtained with the same experimental parameters used for data in Fig. 3.
| +i data are fitted with a straight line, and |�+i data are fitted with a
sinusoidal function. It shows that both Bell states generated from our
experiment have a fidelity �81(2)%. Here, ⇢ represents the two-qubit
density matrix. The parity measurement, P1,1 +P0,0 �(P0,1 +P1,0), allows
direct determination of the amplitudes of the o�-diagonal elements for
both entangled states. The error bars for all data points correspond to one
standard deviation.

With large values of J , we can employ the spin-flip blockade
to create entanglement between atomic spin qubits. By driving a
resonant Raman pulse |1i! |0i simultaneously on the two atoms,
we causeRabi oscillations between |1,1i and the entangledBell state,
| +i= (|0,1i+|1,0i)/

p
2, as the experimental data show in Fig. 3.

A signature of the spin-flip blockade is the characteristic increase
in the Raman–Rabi frequency to

p
2⌦mw (ref. 10). The Bell state

|�+i=(|0,0i+|1,1i)/
p
2, the two-atom cat state, can be generated

from | +i by subsequently applying a global ⇡/2 rotation on the
qubits. Alternatively, while the Rydberg-dressing laser is still on, a
two-microwave-photon ⇡/2-pulse at a shifted frequency, resonant
with the transition from |1, 1i ! |0, 0i, also generates |�+i. This
method has a lower fidelity because the two-photonmicrowave Rabi
rate must be small to avoid excitation to the o�-resonant | +i state,
and decoherence is more likely on this long timescale.

We measure the fidelity of Bell-state preparation as follows.
For a given J , the Raman pulse duration T is chosen so thatp
2⌦mwT = ⇡ with ⌦mw ⌧ J/h̄. Following this procedure, the

automated experimental control system checks whether both atoms
are still present in the traps; if so, it counts as a ‘valid’ operation.
We determine the lower bound of the entanglement fidelity by
measuring the o�-diagonal coherence between the two-qubit logical
basis states, hx 0,y 0|⇢|x ,yi, where ⇢ is the two-qubit density matrix.
For this, we apply a global ⇡/2 pulse with phase � to the entangled
state. As a function of �, we measure the expected value of the
parity Q(�) = h�z ⌦ �zi� = [P1,1 + P0,0 � (P0,1 + P1,0)](�), where
Px ,y(�) is the population in the logical state |x , yi after application
of the ⇡/2 pulse33,34. For qubits prepared in the | +i state, Q is
independent of � and always a positive number; Q= 1 when the
entanglement is perfect. For qubits prepared in the |�+i state,Q(�)
is an oscillating function of �. In this case, perfect entanglement
corresponds to perfect oscillation visibility. The entanglement
fidelity (fidelity between the prepared state and the target Bell
state) is �2|hx 0,y 0|⇢|x ,yi|, as measured from Q(�) (ref. 34). When
this fidelity is greater than 50%, the state is necessarily entangled.
The measurement of Q(�) in Fig. 4 shows that with the same
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Figure 2 | Coherent many-body Rabi oscillations of a mesoscopic atomic ensemble. a–d, Probability of photoelectric detection P as a function of the
single-atom Rabi angle ✓ ; upper level is |102s1/2i, excitation duration is ⌧ = 1 µs. Solid curves are fits of the form P= (1/2)Ae�↵✓2
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cos(

p
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Methods. The fit parameters (A,↵,�,Ne) are: (4.3,1.43,1.70,456) (a), (4.44,1.43,1.77,397) (b), (3.24,1.14,0.72,243) (c) and (2.56,0.79,0.86,148)
(d). The error bars represent one standard deviation (

p
M) for M photoelectric counting events. e,

p
Ne as a function of number of atoms Na determined

from fluorescence measurements. The data are fit with a function C

p
Na, with the best-fit value C= 0.74. The inset shows a collective Bloch vector tipped

by the angle
p
Ne✓ on the unit sphere corresponding to the many-atom states |Gi and |Ri.

pulse area ✓ ⌘ ⌦(0)⌧ , as shown in Fig. 1a,b. The transverse size
(Gaussian waists wx ⇡wy ' 6 µm) of the Rydberg excitation region
is determined by the overlap of the nearly counter-propagating
two-photon excitation laser fields ⌦1 at 795 nm and ⌦2 at 474 nm.
The longitudinal extent of the ensemble is determined by the sample
size of the waist wz ⇡ 11 µm along z .

We measure the population of state |ri by quantum state
transfer onto a retrieved light field using a 1 µs long read-out
field ⌦3 at 474 nm, in resonance with the |102s1/2i $ |5p1/2i
transition26,27. The retrieved field is coupled into a single-mode
fibre followed by a beam splitter and a pair of single-photon
detectors D1 and D2. Figure 2a shows the sum of the photoelectric
detection event probabilities at the two detectors P ⌘ p1 + p2 as
a function of the single-atom Rabi angle ✓ , varied by changing

⌦1(0) between 0 and 5.5MHz for a fixed ⌦2(0) = 3.3MHz.
The data are fit with the sinusoidal oscillation of equation (1)
modified by two Gaussians, as described in the Methods. The
choice of the fit function is motivated by a physical picture in
which the visibility of the oscillation is smeared by fluctuations
of the atom number and the intensities of the laser fields ⌦1
and ⌦2. The overall decay of the retrieved signal is due to an
inhomogeneous distribution of light shifts for atoms in state |Ri,
/ Ne⌦(0)2/1EB which couple the state |Ri to other collective
singly-excited states |R0i, and due to population of doubly-excited
states |RRi which are retrieved with substantially suppressed
efficiency due to spin-wave dephasing22–24. The effective number of
atoms Ne is defined as Ne ⌘ PN

i=1⌦
2
i /⌦

2(0). For our experimental
geometry ⌦ 2

i = ⌦ 2(0) exp(�2x2/w2
x � 2y2/w2

y ), and the atom
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E3 for the |5p1/2!F"Gns1/2! transition, the retrieved field duration increas-

es with n for a fixed power (18 mW) of the 475 nm read-out field. 

In Fig. 2C, P is shown as a function of the two-photon excitation 

<A*3/"'7/'"X"Y"ECe for n=74, 81, and 90, where the peak two-photon Rabi 

47/ZA/(6?" 23"E"" 8E1E2[W8:K1[" 2(" -./" *2&2-"E1,2 \\"K1. In the case of 

strong excitation blockade, collective Rabi oscillations occur even for 

inhomogeneous atom-light coupling (28). Technical sources of dephas-

ing, such as laser linewidth, ac Stark shifts, and atom number fluctua-

tions, are expected to reduce P -+" .'*4" +4" 2-3" &'52&A&" I'*A/" '3" X" 23"

increased. In contrast, in Fig. 2C, we observe a decay of P to zero, with 

no revivals. These observations are consistent with dephasing of multi-

ply-excited spin waves (13). The data for n=90 are fit with a function 

]!X
2
/5<8U!X

2
[9" 1./7/" ]" !" =;=^=8#[" '()"! = 51(1) are adjustable pa-

rameters. The choice of the fit function is suggested by a model with 

Poisson spin-wave excitation statistics (13, 29[;" _2-.2(" -./" &+)/*9" ]"

corresponds to the overall measured retrieval and detection efficiency for 

the spin-wave excitation, while the maximum photoelectric detection 

probability is Pm!]We. 

It is instructive to compare the strongly interacting regime to the ide-

al limit of a non-interacting ensemble, where each atom undergoes a 

Rabi oscillation between the ground level |5s1/2! and the Rydberg level 

|ns1/2! with the position-dependent two-<.+-+(" `'>2" 47/ZA/(6?" E8r). 

Atoms in a sufficiently low-n Rydberg level may be used to approximate 

this ideal situation. In Fig. 2D, P/"  23")23<*'?/)"'3"'"4A(6-2+("+4"X">+-."

for high- and low-n Rydberg levels. The retrieved field is attenuated (for 

low-n) by a factor 1/" to prevent saturation of the single-photon detec-

tors D1 and D2. The weakly interacting (low-n) regime is represented by 

measurements with levels |19s1/2! and |21s1/2! ("19,21=0.05). The maxi-

mum photoelectric detection probability Pm and the corresponding pulse 

'7/'" Xm are lower for n=21 than for n=19, indicative of interaction-

induced excitation suppression. Results for n=74,81,90 ("74,81,90=1) sug-

gest that for such high n, both Pm '()" Xm approach asymptotic values. 

This would be expected if only a single retrievable excitation is generat-

ed in the entire ensemble. In this picture, the effective number of atoms 

N in the ensemble is proportional to the ratio of Pm/" for n=19 and n=90, 

giving # " 5×102. Collectively-enhanced coupling of the driving laser 

fields to the singly-excited spin wave implies # # 8Xm (n!#0[WXm(n=90))2 

" 6×102. In the absence of data for n < 19, these values should be con-
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The single-photon character of the retrieved field is explicitly con-

firmed by cross-correlating the photoelectric counting events at detectors 

Fig. 3. Measured second-order intensity correlation function 
at zero time delay g

(2)
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bg, with best-

45/$8*1.32$U$:$!E"'!)$*%+$n*0 = 67(1). The inset shows cross-
correlated coincidence counts C12 as a function of time delay 
for upper level |102s1/2!. Error bars represent ± one standard 
+385*/5-%$'VM) for M photoelectric counting events. 

Fig. 2. (A) Probability P of photoelectric detection event per 
trial as a function of two-07-/-%$ +3/.%5%6$ 92 shows the 
m=±1/2 Zeeman components of level |90s1/2! split by the bias 
field B0. The solid curve is a pseudo-Voigt fit. (B) Normalized 
temporal profiles of the retrieved field for upper levels |ns1/2! 
for n between 50 and 102, with a fixed power of the retrieval 
4531+$ (3. (C) P as a function of (single-atom) two-photon 
3TR5/*/5-%$0.123$*J3*$O$4-J$Ts:<E!$H2W$2-15+$R5JR132$4-J$B,<s1/2!, 
open circles for |81s1/2!, and diamonds for |74s1/2! upper 
13831E$X73$2-15+$R.J83$52$*$45/$-4$/73$4-J&$Y!O23T0';!O2

) to the 
|90s1/2! data. (D) P/" *2$*$4.%R/5-%$-4$OM$J32.1/2$01-//3+$5%$'C) 
are shown together with additional data for levels |19s1/2! and 
|21s1/2!. The data for n=19 and n=21 are taken with the 
retrieved field attenuated by a factor 1/"19,20=20 to avoid 
detector saturation, whereas for n=74,81, and 90 no 
attenuation is used ("74,81,90=1). The n=19 and n=21 data are 
fitted with a function accounting for averaging of sinusoidal 
oscillations of the retrievable spin-wave amplitude across the 
Gaussian transverse spatial pr-45132$-4$(1,2(r) (27). Error bars 
represent ± one standard deviation ( M ) for M photoelectric 
counting events. 
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Atom	Fock	state	prepara6on	using	blockade	

the Rydberg state. Each excitation laser is locked to a
different mode of a high finesse cavity. The single-photon
Rabi frequencies for the two-photon transition are typi-
cally ðΩ480;Ω780Þ¼ 2π× ð17;160ÞMHz, with a −2.1 GHz
detuning from the 5P3=2 level, giving a single-atom two-
photon Rabi frequency of Ω1 ¼ 2π × 750 kHz. The timing
of each pulse is controlled by the duration of the respective
780 nm beams. In the following, we refer to a Rabi
oscillation between (jai, jbi) and jri as an (Ap, Bp) pulse,
where p refers to the pulse sequence number in Fig. 1(c).
All pulse times t are chosen to have pulse area θ ¼
π ¼

ffiffiffiffi
N̄

p
Ωt, unless explicitly noted.

Following the Fock state pulses, the number (Nb ¼ 0, 1,
or 2) of atoms in state jbi is determined by first ejecting
atoms from jai using resonant light [6], then collecting
light from the remaining atoms while laser cooling for
20 ms. Measurements show that atoms in jai can be ejected
with a fidelity of 97%. Atoms remaining in Rydberg states
at the end of a pulse sequence leave the trap after the FORT
is turned back on [3], so population in Rydberg states is not
directly detected in this experiment.

Beginning with an N̄ atom ensemble initialized in jai,
the A1ðθÞ pulse produces a collective Rabi oscillation
between the state jgi ¼ ja1a2…aNi and the symmetric
singly excited W state jri ¼ N−1=2PN

i¼1 ja1a2…ri…aNi.
The B1 pulse, calibrated using single-atom Rabi oscilla-
tions out of state jbi, then drives a single-atom π pulse
between the single Rydberg atom and the unpopulated jbi
state. Ideally, this sequence should produce a single-atom
Fock state in jbi.
Figure 2 shows the results of measurements of Nb after

A1ðθÞB1 sequences. As the number of atoms is successively
increased from 1 (top) to 15.5 (bottom), the Rabi frequency
increases as expected from collective enhancement. We fit
each data set to the following model for the probability
p1ðtÞ for one atom to be in jbi as a function of A1ðθÞ pulse
time:

a

b

FIG. 1 (color online). (a) Experimental geometry. Counter-
propagating 780 and 480 nm Rydberg excitation lasers, parallel
to an applied magnetic field, couple jai or jbi to jri. Optical
pumping and state selective blowaway beams are incident on the
ensemble in the perpendicular plane. (b) Two-photon excitation
diagram. (c) Fock state generation pulse sequences. Sequential
pairs of A and B excitation pulses perform population transfer
from jai → jri → jbi. Ideally, the Rydberg blockade mechanism
moves a single atom to jbi per A-B pulse pair. After two A-B
pulse pairs, the B3 pulse optionally probes two-atom Fock state
dynamics.

FIG. 2 (color online). Rabi oscillations between jai and jri for
various atom number distributions. The single-atom detection
probability is shown as a function of the pulse area θ ¼ Ω1t of
the Rydberg A excitation. (a) The first 2π rotation for exactly
one atom. A π pulse takes 670 nsec. (b)–(e) The jbi populations
show an atom number dependent frequency for ensemble means
of, respectively, n̄ ¼ 3.0, 6.5, 9.1, 15.5. The solid black lines are
the fits to Eq. (1).
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1. INTRODUCTION 

On the program it says this is a keynote speech--and I don't  know 
what a keynote speech is. I do not intend in any way to suggest what should 
be in this meeting as a keynote of the subjects or anything like that. I have 
my own things to say and to talk about and there's no implication that 
anybody needs to talk about the same thing or anything like it. So what I 
want to talk about is what Mike Dertouzos suggested that nobody would 
talk about. I want to talk about the problem of simulating physics with 
computers and I mean that in a specific way which I am going to explain. 
The reason for doing this is something that I learned about from Ed 
Fredkin, and my entire interest in the subject has been inspired by him. It 
has to do with learning something about the possibilities of computers, and 
also something about possibilities in physics. If we suppose that we know all 
the physical laws perfectly, of course we don't  have to pay any attention to 
computers. It's interesting anyway to entertain oneself with the idea that 
we've got something to learn about physical laws; and if I take a relaxed 
view here (after all I 'm here and not at home) I'll admit that we don't  
understand everything. 

The first question is, What kind of computer are we going to use to 
simulate physics? Computer theory has been developed to a point where it 
realizes that it doesn't make any difference; when you get to a universal 
computer, it doesn't matter how it's manufactured, how it's actually made. 
Therefore my question is, Can physics be simulated by a universal com- 
puter? I would like to have the elements of this computer locally intercon- 
nected, and therefore sort of think about cellular automata as an example 
(but I don't  want to force it). But I do want something involved with the 
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when the neighbors have values s~, s;, . . . .  where j ,  k etc. are points in the 
neighborhood of i. As j moves far from i, m becomes ever less sensitive to 
s'j.  At each change the state at a particular point i will move from w h a t  it 
was to a state s with a probability m that depends only upon the s ta tes  of 
the neighborhood (which may be so defined as to include the point i itself). 
This gives the probability of mak ing  a transition. It 's  the same as i n  a 
cellular automaton; only, instead of its being definite, it 's a probability. Tell  
me the environment, and I'll tell you the probability after a next m o m e n t  of 
time that this point is at state s. And that's the way it's going to work, okay?  
So you get a mathematical equation of this kind of form. 

Now I explicitly go to the question of how we can simulate wi th  a 
c o m p u t e r - - a  universal automaton or something-- the  quantum-meclianJcal 
effects. (The usual formulation is that quantum mechanics has some so r t  of 
a differential equation for a function ~k.) If you have a single particle, q, is a 
function of x and t, and this differential equation could be simulated jus t  
like my probabilistic equation was before. That  would be all right and one 
has seen people make little computers which simulate the Schr6edinger 
equation for a single particle. But the full description of quantum mechanics  
for a large system with R particles is given by a function q~(x I, x 2 . . . . .  x n ,  t)  
which we call the amplitude to find the particles x I . . . . .  xR, and therefore,  
because it has too many variables, it cannot be simulated with a n o r m a l  
computer with a number of elements proportional to R or propor t ional  to 
N. We had the same troubles with the probability in classical physics. A n d  
therefore, the problem is, how can we simulate the quantum mechanics? 
There are two ways that we can go about it. We can give up on our rule 
about what the computer was, we can say: Let the computer itself be bui l t  
of quantum mechanical elements which obey quantum mechanical laws. Or 
we can turn the other way and say: Let the computer still be the same k ind  
that we thought of be fo re - - a  logical, universal automaton; can we imi ta te  
this situation? And I 'm going to separate my talk here, for it branches in to  
two parts. 

4. Q U A N T U M  C O M P U T E R S - - U N I V E R S A L  QUANTUM 
S I M U L A T O R S  

The first branch, one you might call a side-remark, is, Can you d o  it 
with a new kind of c o m p u t e r - - a  quantum computer? (I'11 come back to the 
other branch in a moment.) Now it turns out, as far as I can tell, that y o u  
can simulate this with a quantum system, with quantum computer elemexats. 
It 's  not a Turing machine, but a machine of a different kind. If  we disregard 
the continuity of space and make it discrete, and so on, as an approximat ion  
(the same way as we allowed ourselves in the classical case), it does seem to 
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be true that all the various field theories have the same kind of behavior, 
and can be simulated in every way, apparently, with little latticeworks of 
spins and other things. It's been noted time and time again that the 
phenomena of field theory (if the world is made in a discrete lattice) are well 
imitated by many phenomena in solid state theory (which is simply the 
analysis of a latticework of crystal atoms, and in the case of the kind of 
solid state I mean each atom is just a point which has numbers associated 
with it, with quantum-mechanical rules). For example, the spin waves in a 
spin lattice imitating Bose-particles in the field theory. I therefore believe 
it's true that with a suitable class of quantum machines you could imitate 
any quantum system, including the physical world. But I don' t  know 
whether the general theory of this intersimulation of quantum systems has 
ever been worked out, and so I present that as another interesting problem: 
to work out the classes of different kinds of quantum mechanical systems 
which are really intersimulatable--which are equivalent--as has been done 
in the case of classical computers. It has been found that there is a kind of 
universal computer that can do anything, and it doesn't make much 
difference specifically how it's designed. The same way we should try to find 
out what kinds of quantum mechanical systems are mutually intersimulata- 
ble, and try to find a specific class, or a character of that class which will 
simulate everything. What, in other words, is the universal quantum simula- 
tor? (assuming this discretization of space and time). If you had discrete 
quantum systems, what other discrete quantum systems are exact imitators 
of it, and is there a class against which everything can be matched? I believe 
it's rather simple to answer that question and to find the class, but I just 
haven't done it. 

Suppose that we try the following guess: that every finite quantum 
mechanical system can be described exactly, imitated exactly, by supposing 
that we have another system such that at each point in space-time this 
system has only two possible base states. Either that point is occupied, or 
unoccupied--those are the two states. The mathematics of the quantum 
mechanical operators associated with that point would be very simple. 
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Errors are propagated from the computed spin structure factor using standard techniques. We verify that the
value resulting from the Fourier-based computation agrees with the value obtained by summing individual site-
resolved spin correlations, which explicitly accounts for doublons and holes in the sample, see Extended Data
Fig. 3 (due to spin balance Ŝz

r = 0).

System calibrations.

The system is calibrated via parametric lattice modulation spectroscopy, where the lattice is modulated at
varied frequencies. When the modulation frequency matches an inter-band transition, significant loss of atoms
is seen. The inter-band transition frequencies are fitted to a Mathieu equation model, and a conversion between
lattice laser power and lattice depth is extracted, which sets the tunnelling parameter t. The interaction strength
U is estimated from the scattering length at the applied magnetic field and the lattice depths along the x, y and
z directions.

Theoretical methods.

In the region ⌦, our system is well-described by the single-band, homogeneous, two-component Hubbard model
on a square lattice [29]:

Ĥ = �t
X

�,hi,ji2⌦

(ĉ†
i,�

ĉ
j,�

+ h.c.) + U
X

i2⌦

n̂
i,#n̂i,", (4)

where hi, ji are nearest-neighbours and ĉ
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are the annihilation and number operator of spin

� 2 {", #} on site i, respectively. The on-site spin operators are defined Ŝ↵
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ĉ
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where �↵ are the Pauli
spin matrices.

Close to half-filling and at temperatures significantly below the interaction energy, the Hubbard model exhibits
a linear relation between a change of the singles occupation �singles and doping of the total density �. Using
numerical data obtained from the dynamical cluster approximation [55] method at U/t = 7.2 and T/t = 0.25,
we obtain a fitted slope of � = 1.22(1)⇥ �singles. The relation we obtain is consistent with results obtained from
a resummed numerical linked-cluster expansion [54] (NLCE) method for dopings less than 6%, above which the
resummed NLCE data becomes unstable. We use this result to calculate the hole doping given the singles doping
in Fig. 4.

The quantum non-linear � model mentioned in the main text was originally introduced to describe the low-
temperature Heisenberg model [41, 42]. Finite size e↵ects are expected to increase the spin sti↵ness ⇢

s

[43].
For the theory prediction in Fig. 2d we perform determinant quantum Monte Carlo on the 10 ⇥ 10 periodic-

boundary 2D Hubbard Model at U/t = 7.2 using the QUEST package [56–58]. At low temperatures, the system
does not isotropically sample di↵erent orientations of the staggered magnetization within the 104 measurement
sweeps, so the reported magnetization is averaged over 14 independent runs and averaged over all three axes.

Theoretical methods: Histograms.

Full counting statistics (FCS) represent a powerful tool to characterize quantum states and phenomena in a
variety of systems [59–62]. For example, it has been used to observe the quantization of electrical charge in
shot noise measurements [63], the observation of fractional charges in fractional quantum Hall systems [64–66],
and was used to characterize prethermalization in an ultracold atomic setup [47, 67, 68]. Here we determine
the FCS of the staggered magnetization operator m̂z = 1

N

P
i

(�1)i 1
S

Sz

i

from an ab initio quantum Monte Carlo
simulation of the antiferromagnetic Heisenberg model

Ĥ = J
X

hi,ji

Ŝ
i

· Ŝ
j

. (5)

To this end we implement a stochastic series expansion quantum Monte Carlo calculation with operator loop
updates [69]. We simulate a 16⇥ 16 system with periodic boundary conditions, and calculate the FCS of m̂z in
a smaller 9⇥ 9 region, which is of similar size as the measurement region used in the experiment. In our model

Fermi-Hubbard:	
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Spin	models	in	condensed	ma>er	systems:	a	few	examples	
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þ  Isolate	and	control	≤	10	individual	quantum	systems	

Current	status	
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Neutral	atoms	 Trapped	ions	 Photons	

NV	centers	 Quantum	dots	 Superconduc4ng	qubits	

þ  Isolate	and	control	≤	10	individual	quantum	systems	

Current	status	

All	those	systems	can	be	used	as	two-level	
systems	to	encode	a	spin:	
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Spa4al	Light	
Modulator	

(liquid	crystals)	
Reconfigurable	

NogreIe	et	al.,	PRX	4,	021034	(2014)	

Holographic	2D	arrays	of	tweezers	

���FT[ei'(x,y)]
���
2

'(x, y)
0 

2π 

Phase	calcula4on:	itera4ve	algorithm		[Gerchberg	–	Saxton,	Op4k	35,	237	(1972)]	

Related	works:	Darmstadt,	Amsterdam,	Wisconsin,	Harvard,	Albuquerque,	Chofu,	Otago…	
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Arrays	of	op6cal	tweezers	with	individual	atoms	

Problem:	stochas4c	loading	(p	~	0.5)	

10	μm	

Ini4al	atom	distribu4on	
(stochas4cally	filled)	

Target	atom	distribu4on	
(ordered	array)	

One	solu6on: 	sort	atoms	in	arrays				
Miroshnychenko,	Nature	442,	151	(2006)		

10	μm	



Trap	beam	

PBS	

CCD	
camera	

Aspheric	
lens	

Dichroic	
mirror	

SLM	

Labuhn,	PRA	90,	023415	(2014)	

Moving	op6cal	tweezers	for	atom	assembling	

x	(μm)	

SLM	light	
Moving	tweezer	+	SLM	

Barredo,	de	Léséleuc,	et	al.,	Science	354,	1021	(2016)	



Final image Move atoms 
with 2d AOD 

Compute 
moves Initial image Load 2N traps 

with ~ N atoms 

< 1 ms ~1 ms 
per move 

Total assembly time ~ 50 to 100 ms 

Atom	assembler	sequence	

Barredo,	de	Léséleuc,	et	al.,	Science	354,	1021	(2016)	
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Gallery	of	assembled	2D	arrays…	(single-shot	images…)	

Barredo,	de	Léséleuc,	et	al.,	Science	354,	1021	(2016)	

•  Fully	loaded	arrays	up	to	50	atoms	
•  98%	filling	frac4on	~ 1	/	sec	rep.	rate	
•  100%	filling	every	~	2-5	sec		

10	μm	

Related	work	in	Harvard	(1D),	Science	354,1024	(2016)	



COLD ATOMS

Atom-by-atom assembly of defect-free
one-dimensional cold atom arrays
Manuel Endres,1,2*† Hannes Bernien,1* Alexander Keesling,1* Harry Levine,1*
Eric R. Anschuetz,1 Alexandre Krajenbrink,1‡ Crystal Senko,1 Vladan Vuletic,3

Markus Greiner,1 Mikhail D. Lukin1

The realization of large-scale fully controllable quantum systems is an exciting frontier in
modern physical science. We use atom-by-atom assembly to implement a platform for the
deterministic preparation of regular one-dimensional arrays of individually controlled cold
atoms. In our approach, a measurement and feedback procedure eliminates the entropy
associated with probabilistic trap occupation and results in defect-free arrays of more than 50
atoms in less than 400 milliseconds. The technique is based on fast, real-time control of 100
optical tweezers, which we use to arrange atoms in desired geometric patterns and to
maintain these configurations by replacing lost atoms with surplus atoms from a reservoir.
This bottom-up approach may enable controlled engineering of scalable many-body systems
for quantum information processing, quantum simulations, and precision measurements.

T
he detection and manipulation of individ-
ual quantum particles, such as atoms or
photons, is nowroutinely performed inmany
quantum physics experiments (1, 2); how-
ever, retaining the same control in large-

scale systems remains an outstanding challenge.
For example, major efforts are currently aimed at
scaling up ion-trap and superconducting plat-
forms, where high-fidelity quantum computing
operations have been demonstrated in registers
consisting of several qubits (3, 4). In contrast, ul-
tracold quantumgases composed of neutral atoms
offer inherently large system sizes. However, arbi-
trary single-atom control is highly demanding,
and its realization is further limited by the slow
evaporative cooling process necessary to reach
quantum degeneracy. Only in recent years has
individual particle detection (5, 6) and basic single-
spin control (7) been demonstrated in low-entropy
optical lattice systems.
Here, we demonstrate atom-by-atom assembly

of large defect-free one-dimensional (1D) arrays
of cold neutral atoms (8, 9).
We use optical microtraps to directly extract

individual atoms froma laser-cooled cloud (10–12)
and employ recently demonstrated trapping tech-
niques (13–16) and single-atom position control
(17–20) to create desired atomic configurations.
Central to our approach is the use of single-atom
detection and real-time feedback (17, 20) to elim-
inate the entropy associated with the probabi-
listic trap loading (10) [currently limited to 90%
loading probability evenwith advanced techniques

(21–23)]. Related to the fundamental concept of
“Maxwell’s demon” (8, 9), this method allows
us to rapidly create large defect-free arrays and,
when supplemented with appropriate atom-atom
interactions (15, 16, 24–30), provides a potential
platform for scalable experiments with individu-
ally controlled neutral atoms.
The experimental protocol is illustrated in Fig.

1A. An array of 100 tightly focused optical tweezers
is loaded from a laser-cooled cloud. The col-
lisional blockade effect ensures that each in-
dividual tweezer is either empty or occupied by
a single atom (10). A first high-resolution image

yields single-atom-resolved information about the
trap occupation, which we use to identify empty
traps and to switch them off. The remaining
occupied traps are rearranged into a regular,
defect-free array, and we detect the final atom
configuration with a second high-resolution image.
Our implementation relies on fast, real-time con-

trol of the tweezer positions (Fig. 1B), which we
achieve by employing an acousto-optic deflector
(AOD) that we drive with a multitone radio-
frequency (RF) signal.
This generates an array of deflected beams,

each controlled by its own RF tone (15, 16). The
resulting beam array is then focused into our
vacuum chamber and forms an array of optical
tweezers, each with a Gaussian waist of ≈ 900 nm,
a wavelength of 809 nm, and a trap depth of
U=kB ≈ 0:9 mK [Boltzmann constant (kB)] that
is homogeneous across the array within 2% (31).
The tweezer array is loaded from a laser-cooled

cloud of Rubidium-87 atoms in amagneto-optical
trap (MOT). After the loading procedure, we let
the MOT cloud disperse and we detect the oc-
cupation of the tweezers with fluorescence imag-
ing. Fast, single-shot, single-atom-resolved detection
with 20-ms exposure is enabled by a sub-Doppler
laser-cooling configuration that remains active
during the remainder of the sequence (31) (see
Fig. 2, A to C). Our fluorescence count statistics
show that individual traps are either empty or
occupied by a single atom (10, 31), and we find
probabilistically filled arrays with an average
single-atom loading probability of p ≈ 0:6 (see
Figs. 2A and 3A).
The central part of our scheme involves the

rearrangement procedure for assembling defect-
free arrays (31) (see Fig. 1A). In the first step,
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Fig. 1. Protocol for creating
defect-free arrays. (A) A first
image identifies optical micro-
traps loaded with a single
atom, and empty traps are
turned off.The loaded traps are
moved to fill in the empty sites,
and a second image verifies the
success of the operation.
(B) The trap array is produced
by an acousto-optic deflector
(AOD) and imaged with a 1:1
telescope onto a 0.5-NA
microscope objective, which
creates an array of tightly
focused optical tweezers in a
vacuum chamber. An identical
microscope objective is aligned
to image the same focal plane.
A dichroic mirror allows us
to view the trap light on a
charge-coupled-device camera
(CCD) while simultaneously
detecting the atoms via fluo-
rescence imaging on an
electron-multiplied-CCD
camera (EMCCD). The rearrangement protocol is realized through fast feedback onto the multitone
radio-frequency (RF) field driving the AOD.

EMCCD
vacuum cell

feedback

AOD

Ti
m

e

Position

∆ν

CCD

RESEARCH | REPORTS

 o
n 

N
ov

em
be

r 2
5,

 2
01

6
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d 

fr
om

 

unoccupied traps are switched off by setting
the corresponding RF amplitudes to zero. In a
second step, all occupied tweezers are moved to
the left until they stack up with the original spac-
ing of 2.6 mm. This movement is generated by
sweeping the RF tones to change the deflection
angles of the AOD and lasts 3 ms (31). Finally, we
detect the resulting atom configuration with a
second high-resolution image. These steps imple-

ment a reduction of entropy via measurement
and feedback. The effect is immediately visible in
the images shown in Fig. 2, A and B. The initial
filling of our array is probabilistic, whereas the
rearranged configurations show highly ordered
atom arrays. Our approach also allows us to con-
struct flexible atomic patterns (Fig. 2C).
The rearrangement procedure creates defect-free

arrays with high fidelity. This can be quantified

by considering the improvement of single-atom
occupation probabilities (Fig. 3A) and the success
probabilities, pN, for creating defect-free arrays
of lengthN (Fig. 3B). The single-atom occupation
probability in the left-most 40 traps increases
from ≈ 0:6 before rearrangement to 0.988(3)
after rearrangement, demonstrating our ability
for high-fidelity single-atom preparation. Further-
more, the success probabilities for creating defect-

SCIENCE sciencemag.org 25 NOVEMBER 2016 • VOL 354 ISSUE 6315 1025

Fig. 2. Assembly of
regular atom arrays.
(A) Single-shot, single-
atom-resolved fluores-
cence images recorded
with the EMCCDbefore
(top) and after
(bottom) rearrange-
ment. Defects are
identified, and the
loaded traps are rear-
ranged according to
the protocol in Fig. 1,
indicated by arrows for
a few selected atoms.
(B) Two instances of
successfully rear-
ranged arrays (first two pictures), and one instance where a defect is visible after rearrangement (last picture). (C) The final arrangement of atoms is flexible, and
we generate, e.g., clusters of 2 (top) or 10 (bottom) atoms. Nonperiodic arrangements and adjustable lattice spacings are also possible. (D) High-resolution CCD
image of trap array. Our default configuration for loading atoms consists of an array of 100 tweezers with a spacing of 0.49 MHz between the RF tones,
corresponding to a real-space distance of 2.6 mm between the focused beams (31).
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Fig. 3. Quantifying the rearrangement performance. (A) The initial loading
(blue circles) results in an occupation probability of ≈ 0:6 for each trap in
the array. After rearrangement (red circles), close to unity filling is reached on
the left side of the array. (B) In the initial image, the probability of finding a
defect-free length-N array (starting from the leftmost trap) falls off expo-
nentially with N (blue circles). After the rearrangement of all loaded traps
to form the largest possible array, we demonstrate strongly enhanced suc-
cess probabilities at producing defect-free arrays (red circles).Theory curves
show limits set by the total initial atom number (solid line), the background-
limited lifetime of t = 6.2 s (dotted line), and the product of both (dashed
dotted line) (31). (C) Expected amount of time to wait, on average, to
produce a defect-free array of a given size, taking into account the exper-
imental cycle time of 200 ms (150 ms without rearrangement). Without

rearrangement, the wait time grows exponentially (blue circles). Employing the rearrangement procedure, we can produce arrays of length 50 in less than
400 ms (red circles). Error bars denote 68% confidence intervals, which are smaller than the marker size in (A) and (B).
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Sor6ng	in	1D	(Harvard)	

Science	354,1024	(2016)	



Op4cal	la�ces	Nat.	Phys.	9,	235	(2013)	;	trapped	ions	Nature,	511,	198	&	202	(2014)	
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F.	Perrin	(1933),	Oppenheimer	(1941)	
Th.	Förster	(1946)	

	
Clegg,	The	History	of	FRET	(2006)	
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Energy	transport	in	biological	systems	

Resonant	energy	exchange	around	us…	
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Ensemble	of	two	level-atoms	(frequency	ω0,	linewidth	Γ)	

⇒	modifies	scaIering	Non-radia4ve	energy	redistribu4on.	Rate:		V
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r	 Γ	
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�
O2,	N2	:	ω0	~	UV	
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Near-resonance	light	sca>ering	in	dense	media	

Pellegrino,	PRL	113,	133602	(2014)	
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Theory	curves:	direct	diagonaliza4on	(dipole-dipole	interac4on)			
No	adjustable	parameter	

Calibra4on		
R	(5%)	

Béguin	et	al.,	PRL	110,	263201	(2013).		

Measurement	of	vdW	interac6on	between	2	atoms		



A	1D	Ising	chain	(periodic	cond.):	mean	number	of	Rydberg	excita6ons	

Theory	(Schrödinger),	no	adjustable	parameter…!	
Includes	detec4on	efficiency	(T.	Macri)	

79D3/2 

10 µm 
Rb

Rydberg	frac4on:	 fr =
hNri
N

~	magne4za4on	

Labuhn	et	al.,	Nature	534,	667	(2016)	

Par4ally	loaded	1D	ring	(30	traps,	20	atoms)	



A	1D	Ising	chain	(periodic	cond.):	pair	correla6on	func6on	
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Labuhn	et	al.,	Nature	534,	667	(2016)	



STRUCTURE FACTOR AND RADIAL DISTRIBUTION. . . 2137

FIG. 4. Radial distribu-
tion function g(g) for 36Ar at
85'K, This curve is the
Fourier transform of the
smoothed and extended S(Q)
shown as a solid line in Fig.
3.
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and is listed in Table II. The deviations of the data
from the smoothed S(Q) a,re indicated on an en-
larged scale in Fig. 5(a); the rms deviation is
computed to be 0.019, which is close to the statis-
tical spread in the data. The iterations may be
continued; but it is seen here that for the present
data, only one iteration is necessary to yield a
smoothed S(Q) which represents the experimental
values of S(Q) exceedingly well over the range of
Q for which they were measured, and which trans-
forms into a g(y) with satisfactory behavior at
small r and for which the spurious residual os-
cillations have a relatively small amplitude.

V. DISCUSSION

In Fig. 6 the fully corrected data points for
S(Q) and the results obtained from molecular-dy-
namics calculations by Verlet are compared. No
adjustments to the data have been made to improve
the fit: all corrections and refinements were com-
pleted before Verlet's results were received.
The agreement of the data and computations is

excellent. Except for a slight difference in the
heights of the first peak, where the molecular dy-
namics results are least accurate and where an
error in the calculations of 0. 05orpossibly 0. 1 is
not unreasonable, there is little if any systematic
difference between the data and the calculations,
as indicated on an enlarged scale in Fig. 5(b). The
rms deviation of the data points from the calcula-
tions is 0.022, only slightly larger than the rms
deviation from the smoothed S(Q), Fig. 5(a).
Verlet's calculation was for 864 classical point

particles in a box, with periodic boundary condi-
tions, interacting pair wise via a Lennard- Jones
potential with parameters chosen to give a best fit

to the thermodynamic data. of Levelt (o =8.405 A,
&/k~= 119.8 'K). To the extent that three-body
interactions and quantum corrections are impor-
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FIG. 5. (a) Deviation of the experimental data from the
smoothed and extended S(Q) discussed in the text. (b)
Deviation of the experimental data from S(Q) for a Len-
nard-Jones fluid obtained by Verlet using molecular dy-
namics. (c) Deviation of the experimental data from S(Q)
for a hard-sphere fluid obtained from the Wertheim-Thiele
solution of the Percus- Yevick equation. Calculated values
of S(Q) corresponding to experimental data points were
obtained from tabulated values by spline interpolation.

A	1D	Ising	chain	(periodic	cond.)	=	1D	liquid!	

Also	in	Munich	(2D),		Nature	491,	87	(2012)	
Ates	&	Lesanovsky,	PRA	86,	013408	(2012)	

Petrosyan,	PRA	87	053414	(2013)	

Ω	τ	=	0.3π	

Liquid	argon	(3D)	

PRA	7,	2130	(1973)	

Analogous	to	1D	liquid:	
	

	hard	sphere	Rb	

Labuhn	et	al.,	Nature	534,	667	(2016)	



Adiaba6c	prepara6on	of	spa6ally-ordered	1D	Rydberg	chains	

taking into account realistic relaxation processes affecting the
atoms. We find that, under typical experimental conditions, it
is not feasible to attain the perfectly-ordered ground state of
the Hamiltonian even for three or four Rydberg excitations in
a finite 1D lattice gas. This is because the atomic decay and
dephasing during the exceedingly long preparation time
required for the adiabatic evolution of the system spoil the
adiabaticity and significantly reduce the overlap of the final
state of the system with the target ground state of the
Hamiltonian. This overlap, or fidelity, is largest at some
intermediate value of the preparation time, and maximizing
the probability of the ordered state of Rydberg excitations
requires therefore a compromise between the adiabatic fol-
lowing and decoherence. Even though the perfectly-ordered
state cannot be obtained with high fidelity, good spatial
ordering of Rydberg excitations is still achieved.

2. The adiabatic preparation protocol

We consider a system of N atoms trapped in a 1D optical
lattice potential, with one atom per lattice site, assuming no
site-occupation defects. A spatially-uniform time-dependent
laser field couples the ground state ñg∣ of each atom to the
Rydberg state ñr∣ with the Rabi frequency W t( ) and detuning
d w wº -t rg( ) . In the frame rotating with the laser field
frequency ω, the system is described by the Ising-spin-1

2
-like

Hamiltonian

� å å åd s s s s s= - + D - W +
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ij
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where s m nº ñ ámn
j

jjˆ ∣ ∣ are the projection (m n= ) or transition
(m n¹ ) operators for atom j, while D = C rij ij6

6 is the
strength of the (repulsive, >C 06 ) van der Waals interaction
between the Rydberg-excited atoms i and j separated by
distance rij.

Our aim is to prepare the ground state of Hamiltonian(1)
in the classical limit ofW l 0. The complete basis consists of
states with = ¼n N0, 1, 2, , Rydberg excitations. On an N-

site lattice, n excitations can be arranged in ⎜ ⎟⎛
⎝

⎞
⎠

N
n

different

ways, which is the dimension of the corresponding subspace
�n of the total Hilbert space � �= å =n

N
n0 . In the absence of

interactions,D = " Îi j N0 , 1,ij [ ], all the states in each �n

are degenerate, having the energy d= -E nn . Interactions
D > 0ij between the atoms (partially) lift this degeneracy,
unless =n 0 with =E 00 for the zero-excitation state

ñ º ¼ ñR gg g0∣ ∣ , or =n 1 with d= -E1 for all N single-
excitation states and their symmetric superposition

ñ º å ¼ ¼ ñR gg r g
N j j1
1∣ ∣ . For .n 2, the lowest energy

states ñRn
min∣ are the states with the largest separation between
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where = -l a N 1( ) is the length of the system, i.e., the
distance between the first and last atoms, with a the lattice
constant. The energy spectrum En{ } versus detuning d is
schematically shown in figure 1. For negative detunings
d d= 0, the ground state of the system corresponds to the
=n 0 excitation state ñR0∣ with =E 00 , while for positive

d d� n the ground state corresponds to the lowest-energy n
excitation state ñRn

min∣ , such that < oE En n
min

1
min which leads

to d �n
C n

l2
6

7

6 .
In the adiabatic preparation protocol [22–26],

we start with the state ñR0∣ and the laser detuning
having some negative value d < 0 which we then
slowly increase till reaching some positive final value d d� n.
As we vary the detuning, the energies ¼E n0,1, ,

min cross at

around d d=l l0,0 1 1 2 d= l,C
l 2 3

6
6 d¼ - l� , ,C

l n n
2

1
6

7

6 ( )
- - -� C n n

l
1 26

7 7

6

[( ) ( ) ] [22]. Of course, with vanishing field
amplitudeW l 0, there is no coupling and thereby transitions
between the energy levels En, and the system initially in state

ñ = ¼ ñR gg g0∣ ∣ will remain in that state irrespective of d .
Hence, as we change the detuning, the field W should be non-
zero when the energy levels ¼E n0,1, ,

min cross, which would lead
to avoided crossings and adiabatic following of the ground
state of the system. The initial state with zero Rydberg
excitations ñR0∣ is coupled by the field to the symmetric
single excitation state ñR1∣ with the collectively-enhanced rate

W = Wl N ,0 1

Figure 1. Diagram of energies En of Hamiltonian(1) in the limit of
W l 0 versus laser detuning d , for =n 0, 1, 2, 3, 4 Rydberg
excitations of atoms in a lattice. Thick lines correspond to the lowest
energy En

min within the n-excitation subspace, while thin dotted lines
with the same slope (and color) denote the excited state energies
with the same .n 2.
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Figure 2. Identification of the crystalline phase.
a, Excitation number versus system length for a one-
dimensional system. Blue circles correspond to the ex-
perimental mean number of Rydberg excitations N

e

after the optimized sweep. The right axis shows the ex-
citation number corrected for the detection efficiency.
The green line is the result of the numerical simulation
for the experimental initial states, taking into account
an initial state filling of 0.8 and length fluctuations of
the order of one site. The grey line shows the classical
(⌦ = 0) prediction. Insets: Measured spatial distri-
bution of Rydberg excitations (left) and corresponding
theory (right) for system lengths ` of 12, 23 and 35
sites. The brightness (light to dark) translates to the
normalized number of excitations. b, Compressibility
 of the prepared states. Blue circles are derived from
the experimental data shown in a using a numerical
derivative. The green line is a direct numerical result
(Methods). All error bars s.e.m.

Rydberg atoms have recently been discussed as a plat-
form for the simulation of quantum magnetism. Espe-
cially, the frozen gas Hamiltonian has been at the focus
of theoretical and experimental interest due to its rich
variety of strongly-correlated phases [5–7]. Introducing
spin-1/2 operators, the Hamiltonian can be rewritten in
the form of an Ising model with long-range spin inter-
actions in an effective transverse (~⌦) and longitudinal
(�~�) magnetic field [6, 8]. In the classical limit, ⌦ = 0
and for � > 0, the many-body ground state corresponds
to crystalline Fock states with a total excitation number
N

e

= hN̂
e

i =
P

ihn̂
(i)
e

i. Consequently, the Rydberg ex-
citation number N

e

forms a complete devil’s staircase [29]
as a function of � in the thermodynamic limit. In a one-
dimensional chain of ` � N

e

lattice sites, the excitation
number increases from N

e

to N
e

+1 at the critical detun-
ings `6~�

c

⇡ 7|C
6

|N
e

6/a6
lat

separating successive crys-
tal states with a lattice spacing a

lat

`/(N
e

� 1) [2]. The
laser coupling introduces quantum fluctuations, whose
effect has been studied in a number of recent theory
works [5–8, 30]. Upon increasing ⌦, it has been predicted
that, in the thermodynamic limit, the system undergoes
a two-stage quantum melting [6, 7] via an incommen-
surate floating solid with algebraic correlations followed
by a Kosterlitz-Thouless transition [6, 7] to a disordered
phase. The corresponding scenario for a finite lattice is
shown schematically in Fig. 1a. While finite size effects
naturally broaden the transitions in the (⌦,�) parameter
space, extended lobes corresponding to crystalline states
of N

e

excitations with vanishing number fluctuations can
be well identified for typical parameters of our experi-

ments.
The preparation of the crystalline states requires a

fast dynamical control due to the short lifetime of the
Rydberg states of typically several tens of microseconds.
Our initial state with all atoms in their electronic ground
state coincides with the many-body ground state of the
system for negative detunings and ⌦ = 0. Since for
small coupling strength ⌦ the energy gap to the first
excited state closes at the transition points �

c

between
successive N

e

-manifolds, ⌦ and � have to be varied sim-
ultaneously in order to maximize the adiabaticity of the
preparation scheme. An intuitive and simple choice of
the path (⌦(t),�(t)) starts with a large negative detun-
ing �

min

at which the coupling ⌦ is switched on [2–4].
Next, the detuning is increased to the desired final blue-
detuned value �

max

> 0, followed by a gradual reduction
of the coupling strength ⌦ to zero. In the final stage of
this last step the energy of several many-body states be-
comes nearly degenerate, as illustrated in Fig. 1b for an
exemplary system of five excitations. These lowest many-
body excited states all belong to the same N

e

-manifold
but feature a finite density of dislocations with respect
to the perfectly ordered classical ground state. In prac-
tice this leads to unavoidable non-adiabatic transitions
at the end of the laser pulse, resulting in non-classical
crystalline states composed of spatially localized collect-
ive excitations [2].

Our experiment started from a two-dimensional degen-
erate gas of approximately 250 to 700 rubidium-87 atoms
confined to a single antinode of a vertical (z-axis) optical
lattice. The gas was driven deep into the Mott-insulating
phase by adiabatically turning on a square optical lat-

Schauss	et	al.,	Science	(2015)		
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FIG. 2: Phase diagram and buildup of crystalline phases. a, The schematic ground-state phase diagram of Hamilto-
nian (1) displays phases with various broken symmetries depending on the interaction range Rb/a (Rb blockade radius, a trap
spacing) and detuning � (see main text). Shaded areas indicate potential incommensurate phases (diagram adapted from [29]).
b, The buildup of Rydberg crystals on a 13 atom array is observed by slowly changing the laser parameters as indicated by
the red arrows in a (see also Fig. 3a). The bottom panel shows a configuration where the atoms are a = 5.9µm apart which
results in a nearest neighbor interaction of Vi,i+1 = 2⇡ ⇥ 24MHz and leads to a Z2 order where every other atom is excited
to the Rydberg state |ri. The right bar plot displays the final, position-dependent Rydberg probability (error bars denote
68% CI). The configuration in the middle panel (a = 3.67µm, Vi,i+1 = 2⇡ ⇥ 414.3MHz) results in Z3 order and the top panel
(a = 2.95µm, Vi,i+1 = 2⇡⇥ 1536MHz) in a Z4 ordered phase. For each configuration, we show a single-shot fluorescence image
before (left) and after (right) the pulse. Red circles highlight missing atoms, which are attributed to Rydberg excitations.

can be understood intuitively by first considering the sit-
uation when V

i,i+1 � � � ⌦ � V
i,i+2, i.e. blockade

for neighboring atoms but negligible interaction between
next-nearest neighbors. In this case, the ground state
corresponds to a Rydberg crystal breaking Z2 transla-
tional symmetry that is analogous to antiferromagnetic
order in magnetic systems. Moreover, by tuning the pa-
rameters such that V

i,i+1, Vi,i+2 � � � ⌦ � V
i,i+3 and

V
i,i+1, Vi,i+2, Vi,i+3 � � � ⌦ � V

i,i+4, we obtain arrays
with broken Z3 and Z4 symmetries, respectively (Fig. 2).

To prepare the system in these phases, we dynamically
control the detuning �(t) of the driving lasers to adia-
batically transform the ground state of the Hamiltonian
from a product state of all atoms in |gi into crystalline
states [31, 32]. In the experiment, we first prepare
all atoms in state |gi =

��5S1
/2, F = 2,m

F

= �2
↵

by
optical pumping. We then switch on the laser fields
and sweep the two-photon detuning from negative
to positive values using a functional form shown in
Fig. 3a. Fig. 2b displays the resulting single atom
trajectories in a group of 13 atoms for three di↵erent
interaction strengths as we vary the detuning �. In
each of these instances, we observe a clear transition
from the initial state |g1, ..., g13i to an ordered state of
di↵erent broken symmetry. The distance between the
atoms determines the interaction strength which leads
to di↵erent crystalline orders for a given final detuning.
To achieve a Z2 order, we arrange the atoms with a
spacing of 5.9µm, which results in a nearest neighbor
interaction of V

i,i+1 = 2⇡ ⇥ 24MHz � ⌦ = 2⇡ ⇥ 2MHz,

while the next-nearest neighbor interaction is small
(2⇡ ⇥ 0.38MHz). This results in a buildup of antiferro-
magnetic order where every other trap site is occupied
by a Rydberg atom (Z2 order). By reducing the spacing
between the atoms to 3.67µm and 2.95µm, Z3- and Z4-
orders are respectively observed (Fig. 2b).

We benchmark the performance of the quantum simu-
lator by comparing the measured Z2 order buildup with
theoretical predictions for a N = 7 atom system, ob-
tained via exact numerical simulations. As shown in
Fig. 3, this fully coherent simulation without free pa-
rameters yields excellent agreement with the observed
data when the finite detection fidelity is accounted for.
The evolution of the many-body states in Fig. 3c shows
that we measure the perfect antiferromagnetic state with
54(4)% probability. When corrected for the known detec-
tion infidelity, we find that the desired many-body state
is reached with a probability of p = 77(6)%.

To investigate how the preparation fidelity depends on
system size, we perform detuning sweeps on arrays of
various sizes (Fig. 4a). We find that the probability of
observing the system in the many-body ground state at
the end of the sweep decreases as the the system size
is increased. However, even at system sizes as large as
51 atoms, the perfectly ordered crystalline many-body
state is obtained with p = 0.11(2)% (p = 0.9(2)% when
corrected for detection fidelity), which is remarkable in
view of the exponentially large 251-dimensional Hilbert
space of the system. Furthermore, we find that this state


