Cold Rydberg atoms

Applications to QIP, many-body physics

and quantum optics

Antoine Browaeys

Laboratoire Charles Fabry, Institut d'Optique, CNRS, FRANCE

2 projects:

Many-body physics with arrays of individual Rydberg atoms

Light scattering in dense, small cold atomic clouds

A few historical landmarks

1814 Joseph von Fraunhofer

observation of dark lines in spectrum of the sun

1888 "Rydberg formula"

Johannes Rydberg 1854-1919

$$\frac{n}{N_0} = \frac{1}{(m_1 + C_1)^2} - \frac{1}{(m_1 + C_2)^2}$$

$$\frac{1}{\lambda_{nm}} = R_{\rm H} \left(\frac{1}{n^2} - \frac{1}{m^2} \right)$$

Idea of an infinite series ⇒ highly excited states

	Periodic Table of the Elements											18					
l H Hydrogen											2 He Helum						
1.008													4.003				
3	Alkali: 1 external electron												10				
Li	Ве	Be B C N O F N												Ne			
Lithium 6941	Beryton 2012	Boron Carbon Nitrogen Oxygen Fluorine Neor $1 a^2 2 a^2 (m - 1) m^6 m c$												Neon 20.180			
11	$1s \ 2s \ \dots (n-1)p \ ns$												18				
Na	Μσ												Δr				
Sodium	Asgnesium											Aluminum	Silcon	Phosphorus	Sulfur	Chlorine	Argon
22.990	24.305	3	4	5	6	7	8	9	10	11	12	26.982	28.086	30.974	32.066	35.453	39.948
19	0	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39.098	Calcium 40.078	Scandium 44.9%	Titanium 47.867	Vanadium 50.942	S1 996	Manganese 54,938	iron 55.845	Cobalt 58 933	Nickel 58.693	Copper 63.546	Zinc 65.38	Gallum 69.723	Germanium 72.631	Arsenic 74,922	Selenium 78.971	Bromine 79.904	Krypton 84 798
37	8	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Ŷ	7r	Nb	Mo	Te	Ru	Rh	Pd	Δσ	C d	In	Sn	Sb	Te	Т. I	Xe
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palledium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
84.468	87.62	88.906	91.224	92.906	95.95	98.907	101.07	102.905	106.42	107.868	112.414	114.818	118.711	121.760	127.6	126.904	131.294
55	6	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Cesium 132.905	Barlum 137.328	Lanthanides	Hafnium 178.49	Tantalum 180.948	Tungsten 183.84	Rhenium 196.207	Csmium 190.23	192,217	Platinum 195.085	Gold 196.967	Mercury 200,592	Thailum 204.383	Lead 207.2	Elismuth 208,980	Polonium (208.982)	Astatine 209.987	Radon 222.018
87	8	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra		Rf	Db	Sa	Bb	He	Mt	Ds	Ra	Cn	Uut	FI	Uup	l v	Une	Uuo
Francium	Radium	Actinides	Rutherlandium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Dermstadtium	Roenigenium	Copernicium	Ununtrium	Flerovium	Ununpentium	Livermorium	Ununseptium	Ununoctium
223.020	226.025		[261]	[262]	[266]	[264]	[269]	[268]	[269]	[272]	[277]	unknown	[289]	unknown	[298]	unknown	unknown

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	Lanthanum	Cerium	Presectymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
l	138.905	140.116	140.908	144.243	144.913	150.36	151.964	157.25	158.925	162.500	164.930	167.259	168.934	173.055	174.967
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Ac	Th	Pa	υ	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Calfornium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
l	227.028	232.038	231.035	238.029	237.048	244.064	243.061	247.070	247.070	251.080	[254]	257.095	258.1	259.101	[262]

"Rydberg atom" = a highly excited atom (e.g. Rb)

• strong coupling to fields (DC, MW)

Back to history...

1975 Spectroscopy using lasers (Gallagher, Kleppner, Haroche...)

1980 – 2000 Cavity Quantum Electrodynamics using Rydbergs

High Q cavity: photon lifetime > 1ms + large dipole ⇒ 1 Rydberg interacts with 1 photon!

Haroche, Walther...

1998 Rydbergs meet cold atoms P. Pillet and T. Gallagher

Anderson, PRL **80**, 249 (1998) Mourachko, PRL **80**, 253 (1998)

Diffusion of excitation faster than motion ⇒ correlations between all atoms

 $k_BT \ll Interaction energy$ $\Rightarrow T < 1 mK$

Interactions between Rydberg atoms

REVIEWS OF MODERN PHYSICS, VOLUME 82, JULY-SEPTEMBER 2010

Quantum information with Rydberg atoms

M. Saffman and T. G. Walker

Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706, USA

K. Mølmer

A new era: the Rydberg Blockade idea

VOLUME 85, NUMBER 10

PHYSICAL REVIEW LETTERS

4 September 2000

Fast Quantum Gates for Neutral Atoms

D. Jaksch, J. I. Cirac, and P. Zoller

Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria

S.L. Rolston

National Institute of Standards and Technology, Gaithersburg, Maryland 20899

R. Côté¹ and M. D. Lukin²

VOLUME 87, NUMBER 3

PHYSICAL REVIEW LETTERS

16 JULY 2001

Dipole Blockade and Quantum Information Processing in Mesoscopic Atomic Ensembles

M. D. Lukin,¹ M. Fleischhauer,^{1,2} and R. Cote³

¹ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 ²Fachbereich Physik, Universität Kaiserslautern, D-67663 Kaiserslautern, Germany ³Physics Department, University of Connecticut, Storrs, Connecticut 06269

L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller

Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria (Received 7 November 2000; published 26 June 2001)

A new era: the Rydberg Blockade idea

If $\hbar\Omega \ll U_{\rm vdW}$: no excitation of $|rr\rangle \Rightarrow$ blockade

A new era: the Rydberg Blockade idea

Blockade ⇒ entanglement and gates!!

The first blockade experiments

Atomic ensembles

Pfau, PRL 2007

Weidemuller, PRL 2004 Pillet, PRL 2006

Individual atoms

e overview And now (2017)... a few examples

QIP: entanglement and gates

Many-body physics Quantum simulation

Saffman RMP **82**, 2313 (2010) Saffman, Biedermann...

Non-linear classical & quantum optics

Adams, Hofferbert, Firstenberg, Lukin, Vuletic...

Browaeys, Lukin, Bloch, Pillet, Weidemuller, Morsch...

Exotic long-range molecules

Pfau-Löw, Ott, Shaeffer ...

Outline

Lecture 1: Rydberg atoms and their interactions (~2h)

Lecture 2: Rydberg blockade and application to QIP (~1h)

Lecture 3: Quantum simulation & Quantum Optics with Rydbergs (~1h)

Properties of Rydberg atoms

References:

"Rydberg atoms", T. Gallagher, Cambridge (1994)

"An experimental and theoretical guide to strongly interacting Rydberg gases", R. Loew, J. Phys. B **45**, 113001(2012)

"Quantum Information with Rydberg atoms", M. Saffman, T. Walker, K. Moelmer, Rev. Mod. Phys. **82**, 2313 (2010)

Special Issue on Rydberg Atomic Physics, J. Phys. B (2016) contains many reviews

Quantum defects for alkali atoms

Experiments
$$\Rightarrow E_n = -\frac{R_y}{(n - \delta_{nlj})^2} \qquad R_y = R_y^{\infty} \left(1 + \frac{m_e}{M}\right)^{-1}$$

 $R_y^{\infty} = 10\ 973\ 371.568\ 539\ \text{m}^{-1}$

Quantum defects (Experimental)

For Rb:
$$L$$
 J $\delta_{L,J}$ 01/23.13111/22.654 $n \ge 30$ 3/22.64123/21.3485/21.34635/20.0167/20.016

1

The "effective" potential

Marinescu, PRA 49, 982 (1994)

The "effective" potential

Marinescu, PRA 49, 982 (1994)

Radial wave-function for rubidium

Rydberg atoms are huge...

J. Balewski, PhD thesis

Dipole matrix element from 50s (radial part)

Dipole matrix element from low lying states

S. Hofferberth

Black-Body radiation

Number of photons / mode: $N_{BB}(\nu, T) = \frac{1}{e^{\frac{h\nu}{k_BT}} - 1}$

Stimulated rate: $\Gamma_{n \to n'}^{\text{stim},\text{BB}} = \Gamma_{n \to n'}^{\text{rad}} N_{\text{BB}}(\nu, T)$

Rydberg lifetimes

Beterov et al., Phys. Rev. A 79, 052504 (2009)

Rydberg lifetimes

S. Hofferberth

Stark map without fine structure (Li)

Zimmerman, PRA 20, 2251 (1978)

Summary: Rydberg have exaggerated properties

 Table 1. Properties of Rydberg states.

Property	<i>n</i> -scaling	Value for $80S_{1/2}$ of Rb
Binding energy E_n	n^{-2}	-500 GHz
Level spacing $E_{n+1} - E_n$	n^{-3}	13 GHz
Size of wavefunction $\langle r \rangle$	n^2	500 nm
Lifetime $ au$	n^3	$200~\mu { m s}$
Polarizability α	n^7	$-1.8 \text{ GHz}/(\text{V/cm})^2$
van der Waals coeffi-	n^{11}	4 THz $\cdot \mu m^6$
cient C_6		

A few experimental considerations

References:

Laser cooling and trapping, Nobel Lectures Phillips, Chu, Cohen-Tannoudji, Rev. Mod. Phys. **70**, july 1998

"An experimental and theoretical guide to strongly interacting Rydberg gases", R. Loew, J. Phys. B **45**, 113001(2012)

Special Issue on Rydberg Atomic Physics, J. Phys. B (2016) contains many reviews

Optical lattices

Bakr *et al.*, Nature **462**, 74 (2009) Sherson *et al.*, Nature **467**, 68 (2010) **1**6 μm

Preparation of individual atoms in optical lattices

Works in 2D and 3D

Microscopic dipole traps (tweezers) for single atoms

Schlosser, Nature (2001); Sortais, PRA (2007); Nogrette, PRX (2014)

Related works: Darmstadt, Amsterdam, Wisconsin, Harvard, Otago...

Microscopic dipole traps (tweezers) for single atoms

Schlosser, Nature (2001); Sortais, PRA (2007); Nogrette, PRX (2014)

Fast light-assisted collision prevents two atoms at the same time...

Fluorescence @ 780 nm induced by the cooling lasers

Fast light-assisted collision prevents two atoms at the same time...

Fluorescence @ 780 nm induced by the cooling lasers

Coherent Rydberg excitation (rubidium)

Electronic detection of Rydberg atoms

Field ionization

I. Beterov
Detection of Rydberg atoms

Efficiency > 95%

Efficiency ~ 80%

Coherent optical Rydberg excitation (*n* = 50 – 100**)**

T. A. Johnson *et al.*, PRL **100**, 113003 (2008) Miroshnychenko, PRA **82**, 023623 (2010)

Microwave manipulations (n = 50 - 100)

Interactions between Rydberg atoms

References:

"Experimental investigations of dipole–dipole interactions between a few Rydberg atoms", A. Browaeys *et al.*, J. Phys. B 49, 152001 (2016)

"Calculation of Rydberg interaction potentials", S. Weber *et al.*, J. Phys. B **50**, 133001 (2017)

Softwares to calculate interaction energies

S. Weber *et al.*, arXiv:1612.08053, https://pairinteraction.github.io

ARC: An open-source library for calculating properties of alkali Rydberg atoms, N. Sibalic *et al.*, arXiv:1612.05529 (2016)

Observation of spin exchange between 2 atoms ($R = 30 \mu m$)

Measurement of the Van der Waals energy between 2 atoms

Measurement of the Van der Waals energy between 2 atoms

Theory curves: direct diagonalization (dipole-dipole interaction) **No adjustable parameter!**

Béguin et al., Phys. Rev. Lett. 110 263201 (2013)

Förster resonance: electrically-tuned interaction

S. Ravets et al., Nat. Phys. 10, 914 (2014)

Förster resonance: electrically-tuned interaction

Summary of interaction between Rydberg atoms

Lecture 1: Rydberg atoms and their interaction

Lecture 2: Rydberg Blockade and application to QIP

Lecture 3: Quantum simulation & Quantum Optics with Rydbergs

Blockade with 2 individual atoms

Application to gates and entanglement

References:

"Quantum Information with Rydberg atoms", M. Saffman, T. Walker, K. Moelmer, Rev. Mod. Phys. **82**, 2313 (2010)

"Quantum computing with atomic qubits and Rydberg interactions: progress and challenges", M. Saffmann., J. Phys. B **49**, 202001 (2017)

Rydberg blockade: "addressable" version (U. Wisconsin)

Rydberg blockade: "addressable" version (U. Wisconsin)

Rydberg blockade: collective excitation (IO Palaiseau)

Rydberg blockade: collective excitation (IO Palaiseau)

Rydberg blockade: collective excitation (IO Palaiseau)

Collective excitation and Rydberg blockade

Labuhn et al., Nature (2016)

Collective excitation in sub-poissonian ensemble (MPQ, Garching)

200

Entanglement = resource for quantum computation

Encode information on a qubit: $|0\rangle$, $|1\rangle$

Elementary bricks ("circuit" approach):

Entanglement of two atoms using the Rydberg blockade

If atomic motion frozen $\Rightarrow \delta r_A \approx \delta r_B \approx 0$

Wilk et al., PRL **104**, 010502 (2010)

Analyzing entanglement

$$\psi_{+}\rangle = \frac{1}{\sqrt{2}}(|\downarrow,\uparrow\rangle + |\uparrow,\downarrow\rangle)$$

Measure the density matrix: $ho_{
m exp}=F|\psi_+
angle\langle\psi_+|+
ho_{
m junk}$

$$\hat{\rho} = \begin{pmatrix} P_{\downarrow\downarrow} & a & b & c \\ a^* & P_{\downarrow\uparrow} & \rho_{\uparrow\downarrow,\downarrow\uparrow} & d \\ b^* & \rho^*_{\uparrow\downarrow,\downarrow\uparrow} & P_{\uparrow\downarrow} & e \\ c^* & d^* & e^* & P_{\uparrow\uparrow} \end{pmatrix}_{|\downarrow\downarrow\rangle,|\downarrow\uparrow\rangle,|\uparrow\downarrow\rangle|,\uparrow\uparrow\rangle}$$

Extract the fidelity:
$$F = \langle \psi_+ | \hat{\rho} | \psi_+ \rangle$$

$$F = \frac{1}{2} (P_{\downarrow\uparrow} + P_{\uparrow\downarrow} + 2 \Re(\rho_{\downarrow\uparrow,\uparrow\downarrow}))$$

 $F_{pairs} = 0.75 \pm 0.07$

Details in Gaëtan *et al.*, NJP **12**, 065040 (2010)

Quantum gate using Rydberg blockade

The CNOT gate at uni. Wisconsin (1)

Table of truth: check blockade

Isenhower et al., PRL 104, 010503 (2010)

The CNOT gate at uni. Wisconsin (2)

Check coherence: global Raman rotation

See also: Zhang et al., PRA 82, 030306(R) (2010)

Tailoring the interaction: the dressed interaction picture

PHYSICAL REVIEW A, VOLUME 65, 041803(R)

Spin squeezing of atoms by the dipole interaction in virtually excited Rydberg states

Isabelle Bouchoule and Klaus Mølmer

and and in a

PRL 104, 223002 (2010)	PHYSICAL	REVIEW	LETTERS	4 JUNE 201
PRL 104, 223002 (2010)	FHISICAL	KEVIEW	LEITERS	4 JUNE 20

Strongly Correlated Gases of Rydberg-Dressed Atoms: Quantum and Classical Dynamics

G. Pupillo,¹ A. Micheli,¹ M. Boninsegni,^{2,1} I. Lesanovsky,³ and P. Zoller¹

 $\delta = -100 \,(\mathrm{MHz}) \ ; \ \Omega = 10 \,(\mathrm{MHz})$

Tailoring the interaction: the dressed interaction picture

PHYSICAL REVIEW A, VOLUME 65, 041803(R)

Spin squeezing of atoms by the dipole interaction in virtually excited Rydberg states

Isabelle Bouchoule and Klaus Mølmer

PRL 104, 223002 (2010)	PHYSICAL	REVIEW	LETTERS	4 JUNE 2010

Strongly Correlated Gases of Rydberg-Dressed Atoms: Quantum and Classical Dynamics

G. Pupillo,¹ A. Micheli,¹ M. Boninsegni,^{2,1} I. Lesanovsky,³ and P. Zoller¹

PHYSICAL REVIEW A 82, 033412 (2010)

Interactions between Rydberg-dressed atoms

J. E. Johnson and S. L. Rolston

$$H = \hbar \begin{pmatrix} 0 & \frac{\Omega}{\sqrt{2}} & 0\\ \frac{\Omega}{\sqrt{2}} & \delta & \frac{\Omega}{\sqrt{2}}\\ 0 & \frac{\Omega}{\sqrt{2}} & 2\delta + U_{dd} \end{pmatrix}.$$

$$U_{dd} = -\frac{1000(\text{MHz})}{R(\mu \text{m})^6}$$

$$\delta = -100 \, (\mathrm{MHz}) \ ; \ \Omega = 10 \, (\mathrm{MHz})$$

mante andina

Tailoring the interaction: Rydberg "dressing" with two atoms

Jau et al., Nat. Phys. 12, 71 (2015)

Blockade in atomic ensembles

Applications to single-photon and single-atom source

Rydberg blockade in cold atomic cloud: the U. Connecticut exp^t.

D. Tong *et al.*, PRL **93**, 063001 (2004)

Pulsed, incoherent laser excitation of a MOT \Rightarrow expect $N_{Ryd} \propto$ Intensity

Increase $n \Rightarrow \text{increase } C_6$ $\Rightarrow \text{increase } R_b$ $N_{\text{Ryd}}^{\text{max}} \approx \frac{\text{Volume}}{\frac{4\pi R_b^3}{3}}$

Rydberg blockade in dense cold atomic cloud: the Stuttgart exp^t.

Use a dense ultracold cloud of ⁸⁷Rb + coherent 2-ph. excitation

Rydberg blockade in dense cold atomic cloud: the Stuttgart exp^t.

Check scaling laws

Expect rate of Rydberg production $R\propto\Omega_0\sqrt{\langle N
angle}~$ with $\langle N
angle\propto n_{g0}$

H. Heidemann et al., PRL 99, 163601 (2007)

Collective Rabi oscillations in ensemble

Y.O. Dudin et al., Nat. Phys. 8, 790 (2012)

Collective Rabi oscillations in ensemble

Y.O. Dudin et al., Nat. Phys. 8, 790 (2012)

Application of blockade: a single photon source

Y.O. Dudin et al., Science 336, 887 (2012)

Fig. 3. Measured second-o

Atom Fock state preparation using blockade

Ebert et al., PRL 112, 043602 (2014)

- Lecture 1: Rydberg atoms and their interaction
- Lecture 2: Rydberg Blockade and application to QIP
- Lecture 3: Quantum simulation & Quantum Optics with Rydbergs

From blockade to many-body physics

dim H = 2

Two (collective) states

$$|ggg...\rangle \iff \frac{1}{\sqrt{N}} \sum_{i} |g...r_ig...\rangle$$

Also: Saffman, Kuzmich, Bloch, Pfau, Ott...

dim $H \sim 2^N$

Strongly correlated many-body system!

Experimentally :

tune $\frac{R_b}{a} = 1-20$

Many - body systems and complexity

Complexity: for N > 30 – 40, ab-initio calculations impossible!! Ex: spin $1/2 \Rightarrow$ size of Hilbert space $\sim 2^{N}$ too large

Approximate methods (10² < N < 10⁵): DMRG, Monte Carlo, density functionnal, mean field...

International Journal of Theoretical Physics, Vol. 21, Nos. 6/7, 1982

Simulating Physics with Computers

Richard P. Feynman

International Journal of Theoretical Physics, Vol. 21, Nos. 6/7, 1982

Simulating Physics with Computers

Richard P. Feynman

4. QUANTUM COMPUTERS—UNIVERSAL QUANTUM SIMULATORS

with it, with quantum-mechanical rules). For example, the spin waves in a spin lattice imitating Bose-particles in the field theory. I therefore believe it's true that with a suitable class of quantum machines you could imitate any quantum system, including the physical world. But I don't know whether the general theory of this intersimulation of quantum systems has ever been worked out, and so I present that as another interesting problem: to work out the classes of different kinds of quantum mechanical systems which are really intersimulatable—which are equivalent—as has been done in the case of classical computers. It has been found that there is a kind of

Quantum simulation: an example

Quantum simulation: an example

What can you simulate = N-body problem?

+ Dirac equation, cosmology, gauge theory, quantum chemistry...

Georgescu et al. Rev. Mod. Phys. 86, 153 (2014)

Spin models in condensed matter systems: a few examples

"Simplest" system: interacting spin ½ particles on a lattice:

Open questions (long-range interaction) for N > 30: phase diagram, dynamics, role anisotropy, geometry (frustration) ...

Quantum state engineering

Current status

 $\boxed{\checkmark}$ Isolate and control ≤ 10 individual quantum systems

Neutral atoms

Trapped ions

Photons

NV centers

Quantum dots

Superconducting qubits

Quantum state engineering

Current status

✓ Isolate and control ≤ 10 individual quantum systems

NV centers

Quantum dots

Superconducting qubits

Holographic 2D arrays of tweezers

Phase calculation: iterative algorithm [Gerchberg – Saxton, Optik 35, 237 (1972)]

Related works: Darmstadt, Amsterdam, Wisconsin, Harvard, Albuquerque, Chofu, Otago...

Holographic 2D arrays of tweezers

2π SLM pattern **Spatial Light** 0 Modulator $\varphi(x,y)$ (liquid crystals) Reconfigurable Average fluorescence Laser intensity in focal plane

Arrays of optical tweezers with individual atoms

Initial atom distribution (stochastically filled)

Problem: stochastic loading (*p* ~ 0.5)

One solution: sort atoms in arrays Miroshnychenko, Nature **442**, 151 (2006)

Target atom distribution (ordered array)

Moving optical tweezers for atom assembling

Barredo, de Léséleuc, et al., Science 354, 1021 (2016)

Labuhn, PRA 90, 023415 (2014)

Atom assembler sequence

Barredo, de Léséleuc, et al., Science **354**, 1021 (2016)

Gallery of assembled 2D arrays... (single-shot images...)

Hexagonal

graphene

Kagome: Herbertsmithite

Gallery of assembled 2D arrays... (single-shot images...)

Barredo, de Léséleuc, *et al.*, Science **354**, 1021 (2016)

- Fully loaded arrays up to 50 atoms
- 98% filling fraction ~ 1 / sec rep. rate
- 100% filling every ~ 2-5 sec

Related work in Harvard (1D), Science 354,1024 (2016)

Sorting in 1D (Harvard)

Observation of spin exchange in a 3-atom chain

Optical lattices Nat. Phys. 9, 235 (2013); trapped ions Nature, 511, 198 & 202 (2014)

Three-atom "spin-chain": what to expect (theory) ?

Prepare $|\uparrow\downarrow\downarrow\rangle$ at t = 0, and let the system evolve

2 off-diagonal couplings: V & V / 8

 \Rightarrow eigenvalues (incommensurate):

$$\frac{V}{16} \left(1 + 3\sqrt{57} \right) \ , \ \frac{V}{16} \left(1 - 3\sqrt{57} \right) \ , \ -\frac{V}{8}$$

Resonant energy exchange around us...

Energy transport in biological systems

Resonant interaction and light scattering...

Near-resonance light scattering in dense media

Ensemble of two level-atoms (frequency ω_0 , linewidth Γ)

Non-radiative energy redistribution. Rate: $\frac{V}{\hbar} \Rightarrow$ modifies scattering

Pellegrino, PRL **113**, 133602 (2014) Jennewein, PRL **116**, 233601 (2016) Schilder, PRA **93**, 063835 (2016) Schilder, PRA **96**, 013825 (2017)

From blockade to many-body physics with 2 atoms $(62d_{3/2})$

 $Fit \Rightarrow extract U_{vdW}$

Measurement of vdW interaction between 2 atoms

Theory curves: direct diagonalization (dipole-dipole interaction) **No adjustable parameter**

Béguin et al., PRL **110,** 263201 (2013).

A 1D Ising chain (periodic cond.): mean number of Rydberg excitations

Labuhn *et al.*, Nature **534**, 667 (2016)

Partially loaded 1D ring (30 traps, 20 atoms)

A 1D Ising chain (periodic cond.): pair correlation function

Labuhn et al., Nature 534, 667 (2016)

Partially loaded 1D ring (30 traps, 20 atoms)

A 1D Ising chain (periodic cond.) = 1D liquid!

Petrosyan, PRA 87 053414 (2013)

Adiabatic preparation of spatially-ordered 1D Rydberg chains

Petrosyan et al., J. Phys. B 49, 084003 (2016)

Dynamical crystallization in 1D (MPQ)

A 51-atom "quantum simulator" (Harvard-MIT)

 $R_b \sim a$

H. Bernien, arXiv:1707.04344

